

Course Specifications

This form compatible with NGAAA 2013 Edition

Institution:	Zulfi College Science
Academic Department :	Mathematics
Programme :	Mathematics BSc.
Course : av	Introduction to Topology
Course Coordinator :	Dr. Ahmad Abd Allah Zedan
Programme Coordinator :	Dr. Ahmad Abd Allah Zedan
Course Specification Approved	Date :/ / H

A. Course Identification and General Information

1 - Course title :	Introduction to	Topology	Course Code:	Math472	
2. Credit hours :	(4)	Taxan I.			
3 - Program(s) in v	which the course is	s offered:	Mathema	atics BSc	
4 – Course Langua	0		Statements .		
5 - Name of faculty	member responsi	ible for the	course:	Dr. Ahmad	Zedan
6 - Level/year at w	hich this course is	s offered :	Seven		
7 - Pre-requisites f	or this course (if a	.ny) :			
Real Analys	is (1) Math381		All and a starting		
8 - Co-requisites fo	or this course (if an	ny):			
Introduction	n to Functional A	Analysis N	lath484		
9 - Location if not o	on main campus :				
	(Main	n Campus	– Zulfi)		
10 - Mode of Instru	uction (mark all th	nat apply)			
A - Traditional clas	ssroom	\sqrt{V}	What percentage	60 %	
B - Blended (tradit	ional and	\sqrt{V}	What percentage?	20 %	
online)					_
D - e-learning			What percentage?		
E - Correspondence	e	V	Vhat percentage	· %	
F - Other		V	What percentage?	· %	
Comments :					

B Objectives

What is the main purpose for this course?

This course has been designed as an introduction to general topology. The student enrolled in this course should have a back-ground in Set Theory. This course covers basic point set topology, in particular, Metric and Topological spaces, Separation Axioms, Connectedness, Compactness.

This form compatible with NGAAA 2013 Edition

Briefly describe any plans for developing and improving the course that are being implemented :

1-Cooprate with other educational institutions to find how they deal with the subject.

2- Re- new the course references frequently.

3-Frequently check the latest discovery in science to improve the course objectives.

4- The course needs the use of computers.

5- Posting some course material on the websites to help the students.

6- Focusing on generic skills.

C. Course Description

1. Topics to be Covered

List of Topics	No. of Weeks	Contact Hours
Sets and Relation – Functions – Cardinality - Order.	1	4
Topological Spaces – Accumulation Points – Interior,	4	16
Closure, Boundary and exterior of sets – Coarser and Finer		
Topologies – Subspace		
Bases and Subbases for topologies – Topologies generated	1	4
by classes of sets		
Continuous Function – continuity at a point – open and	2	8
closed function – Homeomorphism spaces – metric Spaces –		
Hilbert Space – Normed Spaces		
Separation Axioms – T1-spaces – Hausdorff Space –	2	8
Regular Spaces – Normal spaces – Completely Regular		
spaces		
Covers – Compact Sets – Subsets of compact sets – finite	2	8
intersection property – compactness and Hausdroff spaces		
separated Sets – Connect Sets – Connects Spaces –	2	8
Connecters on the real line		

2. Course components (total contact hours and credits per semester):

	Lecture	Tutorial	Laboratory	Practical	Other:	Total
Contact Hours	45	30	•••••	•••••	12	166

Credit 3 1			4
------------	--	--	---

3. Additional private study/learning hours expected for students per week.

5-6 Hours

4. Course Learning Outcomes in NQF Domains of Learning and Alignment with Assessment Methods and Teaching Strategy

1.0 1.1	NQF Learning Domains And Course Learning Outcomes Knowledge <u>Define</u> Topological Spaces, Accumulation	Course Teaching Strategies Start each chapter	Course Assessment Methods Exams
	Points , Interior, Closure, Boundary and exterior of sets – Coarser and Finer Topologies – Subspace	by general idea and the benefit of it.	Midterms Final
1.2	<u>Recognize</u> Bases and Subbases for topologies and <u>write</u> Topologies generated by classes of sets	Demonstrate the course information	examination.
1.3	<u>Describe</u> Continuous Function , continuity at a point and <u>list</u> separation axioms	and principles through lectures.	
1.4	<u>Stat</u> Covers – Compact Sets and <u>named</u> Connect Sets – Connects Spaces		
1.5	Outline the logical thinking.	Provide main ways to deal with the exercises.	Homework.
1.6	State the physical problems by mathematical method.	Solve some examples during the lecture.	Continuous discussions with the students during the lectures.
2.0	Cognitive Skills		
2.1	The students will explain and interpret a general knowledge of general topology.	Encourage the student to look for	Midterm exams Quizzes.

•	NQF Learning Domains And Course Learning Outcomes	Course Teaching Strategies	Course Assessment Methods
2.2 2.3	Enable students to analyses the mathematical problems. Student's ability to write physical	some complicated problems in the different references. Ask the student to attend lectures for practice solving problem. Homework	Doing homework. Check the problems solution. Discussion of
	equations in a correct mathematical way.	assignments.	how to simplify or analyses some problems.
3.0	Interpersonal Skills & Responsibility		
3.1	The student should illustrate how take up responsibility.	Ask the students to search the internet and use the library. Encourage them how to attend lectures regularly by assigning marks for attendance.	Quizzes of some previous lectures. Ask the absent students about last lecture.
3.2	Must be shown the ability of working independently and with groups.	Teach them how to cover missed lectures. Give students tasks of duties	Discussion during the lecture.

مام عة المجمعة

	NQF Learning Domains And Course Learning Outcomes	Course Teaching Strategies	Course Assessment Methods
4.0	Communication, Information Technology,	Numerical	
4.1	The student should illustrate how to communicating with: Peers, Lecturers and Community.	Creating working groups with peers to collectively prepare: solving problems and search the internet for some topics.	Discussing a group work sheets.
4.2	The student should interpret how to Know the basic mathematical principles using the internet.	Give the students tasks to measure their: mathematical skills, computational analysis and problem solving.	Discuses with them the results of computations analysis and problem solutions.
4.3	The student should appraise how to Use the computer skills and library.	Encourage the student to ask for help if needed.	Give homework's to know how the student understands the numerical skills.
4.4	The student should illustrate how to Search the internet and using software programs to deal with problems.	Encourage the student to ask good question to help solve the problem.	Give them comments on some resulting numbers.
5.0	Psychomotor		
5.1	Not applicable	Not applicable	Not applicable
5.2	Not applicable	Not applicable	Not applicable

5. Schedule of Assessment Tasks for Students During the Semester:

	Assessment task	Week Due	Proportion of Total Assessment
1	Midterm 1 Majmaah Univer	5th week	20%
2	Midterm 1	10th week	20%
	Homework + reports	During	20%
3		the	
		semester	
4	Final exam	End of	40 %
		semester	

D. Student Academic Counseling and Support

1- 8-office hours per week in the lecturer schedule.

2- The contact with students by e-mail and website.

E. Learning Resources

1. List Required Textbooks :

- Semymour Lipschutz, General Topology, McGraw-Hill. Inc
- Sidney A. Morris, Topology Without tears, 2007
- 2. List Essential References Materials :
 - James Munkers : Topology A first Course, Prentice Hall, 1975
 - S. Willard: Ceneral Copology, Honding MA, 1970
 - D. Goshi : Introduction to General Topology, New Delhi 1986 .
- 3. List Recommended Textbooks and Reference Material :
 - Same as mention above.
- **4. List Electronic Materials** :
 - http://www.seciencedirect.com.
 - http://faculty.mu.edu.sa/m.khalaf/topology
- 5. Other learning material :
 - Non.
- F. Facilities Required
- 1. Accommodation

This form compatible with NCAAA 2013 Edition

جامعة المجمعة

- Classroom with capacity of 30-students.
- Library
- 2. Computing resources
 - Not available
- 3. Other resources
 - None
- **G** Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching:

• Student evaluation electronically organized by the University.

2 Other Strategies for Evaluation of Teaching by the Program/Department Instructor :

- The colleagues who teach the same course discuss together to evaluate their teaching
- **3** Processes for Improvement of Teaching :
 - Course report, Program report and Program self-study.
 - A tutorial lecture must be added to this course.
- 4. Processes for Verifying Standards of Student Achievement
 - The instructors of the course are checking together and put a unique process of evaluation

5 Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement :

- 1- The following points may help to get the course effectiveness:
- * Student evaluation.
- * Course report.
- * Program report.
 - * Program self-study.
- 2- According to point 1 the plan of improvement should be given
- •

Course Specification Approved

Department Official Meeting No (.....) Date ... / / H

Course's	Coord	linator
e o di se s	00010	

Name : Signature : Date :

s Coordinator		
Dr. Ahmad Zedan		
CIME		
$\dots / \dots / \dots H$		

Department Head		
Name :	Prof. Dr. Adel Zaki	
Signature :		
Date :	$\dots / \dots / \dots H$	

