Kingdom of Saudi Arabia<br>Ministry of Higher Education College of Computer \& Information Sciences<br>Majmaah University

## Course Profile

| Course Name:- | Probability and Statistics |
| :--- | :--- |
| Course Code:- | STAT 102 |
| Academic Year:- | 1434-1435 |
| Semester:- | Spring |

## Course Overview

This course includes the following topics: Introduction to Sample space, Random events, Probability rules, Conditional probability, Baye's rule $و$ Random variables, Definitions of Discrete and Continuous distributions, mean and variance of a random variable, and mean and variance of a linear combination of independent random variables. Discrete distributions (Binomial, Hyper geometric, Poisson) and continuous distributions (Uniform, Exponential, Normal), Sampling distributions of sample statistics: t-distribution, The concept of estimation methods: Point estimation and Confidence interval estimation, Concepts of Testing Hypotheses: Hypotheses testing of a single Population parameter (mean, proportion, difference between two means and difference between two proportions of independent populations), Concepts of simple linear correlation and linear regression.

| Course Details |  |
| :--- | :--- |
| Level:- | 4 |
| Credit:- | $3(3,0,1)$ |
| Pre-Requisites:- | N/A |
| Co- Requisites:- | N/A |

## Learning Outcomes of Course

The student is expected to be able to:

1. Apply probability rules and independent random events.
2. Use random variables and their probability distribution.
3. Use discrete probability distributions and their relationships.
4. Use continuous probability distributions and their applications.
5. Apply sampling distribution of sample statistics.
6. Understand the principles of estimation and estimation of population parameters.
7. Understand the principles of estimation of simple linear regressions.

| Name of Assessment Task | Weight of Assessment | Week Due |
| :---: | :--- | :--- |
| 1. Midterm Exam-1 | $\mathbf{1 5 \%}$ | Week 8 |
| 2. Midterm Exam-2 | $\mathbf{1 5 \%}$ | Week 13 |
| 3. Quizzes | $\mathbf{1 5 \%}$ |  |
| 4. Assignments/Report/Seminar | $\mathbf{1 5 \%}$ |  |
| 5. Final Exam | $\mathbf{4 0 \%}$ | Week16 |

## Assessment Task and Learning Outcomes Alignment

| Assessment Task Name | Course Learning Outcomes |  |  |  |  |  |  |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ |
| 1. Midterm Exam-1 | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |  |  |  |  |
| 2. Midterm Exam-2 |  |  |  | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |  |
| 3. Quizzes | $\sqrt{ }$ | $\sqrt{ }$ |  | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |  |
| 4. Assignments/Report/Seminar | $\sqrt{ }$ |
| 5. Final Exam | $\sqrt{ }$ |

## Teaching Contact Details

| Name of Course Coordinator:- | Eyad Haj Said |
| :--- | :--- |
| Email of Course Coordinator:- | eh.said@mu.edu.sa |
| Lab/Tutorial Instructor:- | Ahsan Ahmad |
| Email of Lab/Tutorial Instructor:- | a.ahmed@mu.edu.sa |
| Office Hours:- | Sun: 9:00am - 12:00pm, or by appointment |
| Office Number:- | $24-1-14-3$ |
| Office Phone Number:- | 164042597 |

## Details of Required Text Book

| Book Name | Authors Name | Publisher | Year | Edition |
| :--- | :--- | :--- | :--- | :--- |
| Probability and Statistics <br> for Engineers and Scientists | Ronald E. Walpole, Raymond <br> H. Myers, Sharon L. Myers <br> and Keying E. Ye Andrew <br> Green | Pearson | 2011 | 9th Edition |

## Details of Required Reference Books

| Book Name | Authors Name | Publisher | Year | Edition |
| :--- | :--- | :--- | :--- | :--- |
| Applied Statistics and <br> Probability for Engineers | Douglas C. Montgomery and, <br> George C | Wiley | 2013 | $6^{\text {th }}$ Edition |

## IT Resources

You will need access to the following IT resources:

- MU University Student Email
- Internet
- Course Website
- Matlab


## Course Schedule

| Course Topics | Book's Chapter | Event Name | Week Due |
| :--- | :--- | :--- | :--- |
| Introduction to Sample space, Random <br> events, Probability rules, Conditional <br> probability, Baye's rule | Chapter 1-2 | Week 1-2-3 |  |
| Random variables, Definitions of Discrete <br> and Continuous distributions, mean and <br> variance of a random variable, and | Chapter 3-4 | Assigement1 <br> Quiz-1 | Week -4 |
| Mean and variance of a linear combination <br> of independent random variables. | Chapter 4 | Assigement2 | Week 5-6 |
| Discrete distributions (Binomial, Hyper <br> geometric, Poisson) | Chapter 5 | Midterm-1 <br> (Week-7) <br> Assignment 3 | Week 7-8-9 |
| Continuous distributions (Uniform, <br> Exponential, Normal) | Chapter 6 | Quiz 2 | Week 10 |
| Sampling distributions of sample statistics: <br> t-distribution | Chapter 8 | Assignment 4 | Week11 |
| The concept of estimation methods: Point <br> estimation and Confidence interval | Chapter 9 | Assignment 5 | Week 12 |


| estimation, Concepts of Testing |  | Quiz 3 (Week <br> $12)$ |  |
| :--- | :--- | :--- | :--- |
| Hypotheses: Hypotheses testing of a single <br> Population parameter (mean, proportion, <br> difference between two means and <br> difference between two proportions of <br> independent populations) | Chapter 10 | Assignment 6 <br> Midterm-2 <br> (Week 13) <br> Quiz 4 (Week <br> $14)$ | Week 13-14 |
| Concepts of simple linear correlation and <br> linear regression. | Chapter 11 | Final Exam | Week 16 |
| Referencing Style |  |  |  |

## American Psychological Association (APA)

## Course Assessment Task

| Assessment Name:- | Midterm Exam-1 |
| :---: | :---: |
| Description of Task Assessment:- | This assignment is aligned to learning outcomes 1, 2 and 3. In that regard, the assignment contains questions that assess: <br> 1. Apply probability rules and independent random events. <br> 2. Use random variables and their probability distribution. <br> 3. Use discrete probability distributions and their relationships. |
| Task Assessment Due Week/Date:- | Week 8 |
| Return Week/Date to Students:- | Week 9 |
| Weight of Task Assessment:- | 15\% |
| List of Learning Outcomes Assessed:- | 1. Apply probability rules and independent random events. <br> 2. Use random variables and their probability distribution. <br> 3. Use discrete probability distributions and their relationships. |


| Assessment Name:- | Midterm Exam-2 |
| :--- | :--- |
| Description of Task Assessment:- | This assignment is aligned to learning outcomes 4, 5 <br> and 6. In that regard, the assignment contains <br> questions that assess: |


|  | 4. Use continuous probability distributions and their applications. <br> 5. Apply sampling distribution of sample statistics. <br> 6. Understand the principles of estimation and estimation of population parameters. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Task Assessment Due Week/Date:- | Week 13 |  |  |  |  |
| Return Week/Date to Students:- | Week 14 |  |  |  |  |
| Weight of Task Assessment:- | 15\% |  |  |  |  |
| List of Learning Outcomes Assessed:- | 1. Use continuous probability distributions and their applications. <br> 2. Apply sampling distribution of sample statistics. <br> 3. Understand the principles estimation and estimation population parameters. |  |  |  |  |


| Assessment Name:- | Final Exam |
| :---: | :---: |
| Weight of Task Assessment:- | 40\% |
| Duration:- | 180 Minutes |
| Warning:- | Dictionary - non-electronic, concise, direct translation only (dictionary must not contain any notes or comments) <br> Calculator Permitted <br> Closed Books |
| List of Learning Outcomes Assessed:- | 1. Apply probability rules and independent random events. <br> 2. Use random variables and their probability distribution. <br> 3. Use <br> discrete <br> probability <br> distributions $\qquad$ and their relationships. <br> 4. Use continuous <br> probability distributions and their applications. <br> 5. Apply sampling distribution of sample statistics. <br> 6. Understand the principles of estimation and estimation of population parameters. <br> 7. Understand the principles of estimation of simple linear regressions. |

