Normal Microbial Flora and • Innate Immune System of Respiratory Tract

• By

- Dr. Syed Yousaf Kazmi
- Assist Prof Microbiology
- OBJECTIVES
- Describe innate immune defense mechanisms of respiratory tract
- Identify normal microbial flora of upper respiratory tract

 Discuss beneficial role & disease causing ability of normal flora of respiratory tract

INTRODUCTION
8,500 L air is conveyed daily by the airway
Inhaled air contains inorganic substances e.g. smoke and soot as well as organic particles e.g. pollen, fungi, viruses and bacteria

- Structurally and functionally two main compartments.
 - Conducting part (nasal cavity, naso-pharynx, larynx, trachea, bronchi and bronchioles)
 - Respiratory part (terminal bronchial tree & alveoli)
 - INTRODUCTION
- UPPER RESPIRATORY TRACT

Nose, Sinuses, Pharynx
 LOWER RESPIRATORY
 TRACT

– Larynx, Trachea, Bronchi,

Bronchiole, Alveoli

□Most imp portal of entry of

infections into body

□Very efficient defense mechanism

• INNATE IMMUNITY OF RESP TRACT

- Nonspecific host defense not acquired through contact with an antigen e.g. intact skin etc.
- □ Characteristics of innate immunity
 - Resistance that exists prior to exposure
 - Readily available
 - Non specific
 - Does not improve on repeated exposures
 - There is no immunologic memory
 - Innate immunity of resp tract has following mech
 - ANATOMICAL
 - PHYSIOLOGICAL

- BIOCHEMICAL
- MICROBIOLOGICAL

• ANATOMICAL BARRIERS

- Hair follicles in anterior nares
- Filter large dust / other large
 - airborne particles etc.
 - □Nasal conchae/ nasal meatus
- Wet surfaces trap airborne particles
 - □ Mucus blanket-prevents
 - attachment
 - □ Cilia in resp epitheliumdislodge pathogens

• PHYSIOLOGICAL

Cough Reflex

- Helps propel sputum from LRT
 Sneeze Reflex
- Helps expels irritant out from URT
 Mucociliary Escalator
- Constant movement of mucus from LRT towards pharynx
- Extremely important mech
- Damage to this causes many infective diseases of LRT
 - MUCO-CILIARY ESCALATOR

VIDEO BIOCHEMICAL & CELLULAR COMPONENTS □ UPPER RESP TRACT

- Nasal fluid contains
- Lysozyme
- Lactoferrin
- IgA antibodies
 - LOWER RESP TRACT
- No cilia
- Alveolar fluid
- Lysozyme
- IgG antibodies

- Alveolar macrophages (phagocytosis)
- Neutrophils
- Inflammatory response

• MICROBIOLOGICAL

- □ Mainly URT
- LRT is devoid of microbiota
- Anterior Nostrils
- Staph aureus; 20% persistent, 20%
 non carriers & 60% intermittent
 carriers
- Corynaebacterium,
 Propionibacterium
 Nasopharynx

Streptococci, Neisseria spp, Haemophilis
Oropharynx
Ns. meningitidis, S. pneumoniae, S.

pyogenes, H. influenzae, Candida

• BENEFICIAL ROLE OF MICROBIOTA

- Inhibits attachment of
 - pathogens
- Covers the receptor sites
- □ Physical competition for

nutrients

Create adverse environment

for pathogen by

- Mutual inhibition by metabolic or toxic products
- Mutual inhibition by antibiotic materials or bacteriocins
- Other mechanisms

• HARMFUL EFFECTS OF RESPIRATORY FLORA

ENDOGENOUS INFECTIONS

- URT infections by viruses, smoking etc.-ciliary damage
- Acute bacterial meningitis (*Ns. Meningitidis*)

- Acute lobar pneumonia
 (*Streptococcus pneumoniae*)
- Extension of resp flora to sinuses
 - –Acute sinusitis
- Nasal packing in epistaxis
 Infective endocarditis (Viridans Streptococci)

• HARMFUL EFFECTS OF RESPIRATORY FLORA

- Use of antimicrobials
- Thrush (Candida)
- Immune suppression results in overgrowth of flora

• Acute esophagitis (Candida) in HIV **EXOGENOUS INFECTION/** NOSOCOMIAL INFECTIONS Surg site infection in hosp by *Staph* aureus Usually source is healthcare provider MRSA outbreaks in ITCs/ wards from poor hand hygiene