PATHOLOGY OF BRONCHIAL ASTHMA Bronchial Asthma

Define bronchial asthma.

- o Describe types of bronchial asthma. o Discuss etiopathogenesis of asthma.
- o Describe morphological features.

Obstructive and restrictive lung diseases

- Obstructive lung diseases
- (i.e. increased resistance to air flow) include:-
- 1. <u>Bronchial</u> <u>Asthma</u>.
- 2. Emphysema.
- •3. Chronic

bronchitis.

•4. Bronchiectasis.

5. Cystic fibrosis and bronchiolitis.

• Why should we care about asthma? What is Asthma?

- <u>Definition</u>:
- Asthma is a chronic inflammatory disorder of the airways that causes recurrent

spasmodic episodes, due to increased hyperirritability or responsiveness of the bronchial tree to various stimuli.

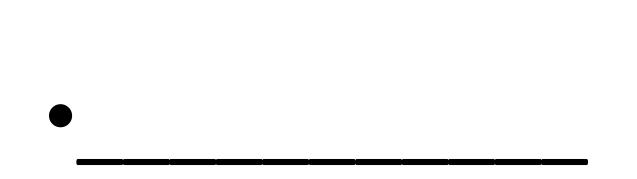
- This associated with these clinical manifestations:
 - 1. Wheezing.
 - 2. Breathlessness.
- 3. Chest tightness.
- 4. Cough, particularly at night and/or in the early morning.

It is manifested physiologically by a widespread narrowing of the air passages, which may be relieved spontaneously or as a result of therapy. Can not cure but can
<u>controlled</u>.
Life threatening disease

How long this episodes taking place? (Mild, severe) (Min\hr) Bronchial asthma risk factors

 1- Atopy (allergic asthmalargest risk factorgenetic).

2 – Environmenta I factors(viruses,


occupational exposures, allergens, cold air, dust, smoking ,others...).

3- family history.

....

Bronchial asthma Classifications Asthma may be categorized into types

3-Bronchoco nstriction triggering

agents include

(a) Seasonal asthma (b) Exercise-

induced asthma. (c) Druginduced asthma (e.g., aspirin & NSAID).

(d) Occupational asthma **(e) Eemotional** asthma.

(f) Asthmatic bronchitis in smokers.

4-Recent studies added three subphenotyp es of Asthma

, based on Airway inflammation pattern. **Asthma Types**

• <u>1- Atopic asthma</u> (allergic

sensitization, Extrinsic) :

Classic example of

type I IgE-mediated hypersensitivity reaction.

- Usually encountered in patient known case of **rhinitis**, eczema.
- Genetic predisposition.
- A positive family history of asthma is common.

 Begins in childhood.

 Triggered by environmental allergens, such as dusts, pollens, roach or animal dander, and certain

types of foods., etc...

 <u>Diagnosis</u>: clinical diagnosis is essential

•

+.....

(a) Skin test : Using the offending antigen → immediate <u>wheal-</u> <u>and-flare</u> reaction.

(b) Serum
 radioallergosorbent
 tests (called RAST):
 TO identify the

presence of IgE specific for a panel of allergens. Asthma Types 2. Non-atopic asthma:

- Non allergic.

 Triggered commonly → by Respiratory infection due to viruses (e.g., rhinovirus, parainfluenza virus).

- Family history: less common.

- Skin test: reveals negative reaction.

- Mechanism:

It is thought that virus-induced inflammation of the respiratory mucosa \rightarrow lowers the threshold of the subepithelial vagal receptors to irritants.

Asthma Types

- **3** Bronchoconstriction triggering agents
- (a) Drug-Induced Asthma.
 - Aspirin-sensitive asthma + NSAID occurring with recurrent rhinitis and nasal polyps.

-Others examples: adrenergic antagonists, coloring agents . **Commonly occurs in adult.**

Mechanism:

Aspirin inhibiting the cyclooxygenase pathway of arachidonic acid metabolism without affecting the lipoxygenase route, thus tipping the balance toward elaboration of the

bronchoconstrictor leukotrienes.

Asthma Types

(b) Occupational Asthma.

Caused or worsened by breathing in irritants on the job.

- Triggered\stimulate
 d by:
 - 1) Fumes (epoxy resins, plastics)
 - 2) Metal and dusts (platinum, wood, cotton)

 3) Chemicals and Gases (formaldehyde, penicillin products, toluene, enzymes). 4) Animal substances (5) Plants

Minute quantities & Repeated exposure.

Mechanisms:

- According to stimulus include:-
 - Type I hypersensitivity reactions .
 - Liberation of bronchoconstrictor substances.
 - Hypersensitivity responses of unknown origin.

Bronchial asthma

- •4- Pattern of the Airway inflammation :
- 1) Eosinophilic asthma.
- •2) Neutrophilic asthma.

3) Mixed inflammatory asthma.
4) Paucigranulocytic asthma.

These subgroups may differ in their:
(a) Etiology.

(b) Immunopathology. (c) Response to treatment.

Asthma Pathogenesis-1 <u>GENETIC</u> <u>CONSIDERATIONS</u>

Genetic predisposition In case of Atopic asthma- type I hypersensitivity

Inheritance of susceptibility genes (postulation) that makes individuals

prone to develop strong T_H2 reactions against environmental antigens (allergens)

Asthma Pathogenesis-2

1. The airway epithelium and submucosa contain dendritic cells that capture & process antigen \allergens. **Initial sensitization** \rightarrow stimulate induction of $T_H 2$ cells.

2. T_H2 cells secrete cytokines e.g.(IL-4, IL-5,IL-13) that promote allergic inflammation and stimulate B cells to produce IgE and other antibodies.

3. Action of Cytokins (a) IL-4 \rightarrow Production of IgE by B cells. (b)IL-5 \rightarrow Activates recruited eosinophils. (c) IL-13 \rightarrow Mucus **Secretion**(bronchial submucosal glands)

 \rightarrow also

Promotes IgE

production by B cells.

Asthma Pathogenesis-3 (Early & Late reaction)

3. IgE coats submucosal mast cells.

4. Repeat exposure triggers the mast cells to release granule contents and produce cytokines and other

mediators→ induce the <u>early-phase</u> (immediate hypersensitivity) reaction and the <u>late-phase</u> reaction

Asthma Pathogenesis-4 (Early reaction- Minutes)

- Antigens→Th2⊇+ IgE production→IgE binding to mast cells leads to Eosp.

recruitment& release of primary mediators=

- (Histamine, chemotactic factors, and secondary mediators i.e. leukotriens, prostaglandins, cytokines and neuropeptides). This results in:
- (A) Bronchospasm- triggered by direct stimulation of subepithelial vagal (parasympathetic) receptors through both central and local reflexes.
- > (B) Secretion of mucus.
- (C) Variable degree of vasodilatation& increase permeability.
- > (D) Accumulation of leukocytes.

Asthma Pathogenesis-5 (Late reaction- Hours)

- **6- 10 hr later,** produces a continued state of airway

hyperresponsiveness with eosinophilic and neutrophilic infiltration. (steroid helpful to treat this stage)

<u>Components</u>: consists largely of inflammation with recruitment of leukocytes= (Eosinophils, neutrophils, and more T cells).

 Leukocyte recruitment is stimulated by chemokines produced by <u>mast cells</u>, <u>Epithelial cells</u> (eotaxin) and <u>T cells</u>, and by other cytokines.

 <u>Outcome</u>: persistent bronchospasm, edema, and necrosis of epithelial cells by *The <u>major basic protein of</u>* <u>eosinophils.</u>

Cellular sources of inflammatory mediators& their effects

Morphology of Asthma

<u>Airway</u> remodeling.

- •Overall thickening of airway wall . Reduction of
 - diameter
- Basement
 membrane
 fibrosis(BM
 thickening).

 Increases muscle mass (Hypertrophy and/or hyperplasia). Increased in size and number of blood vessels. Increase number of the submucosal glands.

 Mucus metaplasia of epithelium. Increased fibrogenic factors \rightarrow collagen type I,II "scar" Irreversible Airflow obstruction.

Bronchial asthma, microscopic Curschman's spirals ^{Charcot-Leyden crystals} THE END