

Course Specification (Bachelor)

Course Title: Data Structures

Course Code: CS231

Program: Computer Science

Department: Computer Science

College: College of Computer and Information Sciences

Institution: Majmaah University

Version: Course Specification Version Number

Last Revision Date: Pick Revision Date.

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment	
Methods	4
C. Course Content	5
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
F. Assessment of Course Quality	6
G. Specification Approval	7

A. General information about the course:

1. Course Identification

1. Credit hours: 3 (3+1+1) 2. Course type A. □University ⊠ College □Department □Track □Others B. ⊠ Required □Elective 3. Level/year at which this course is offered: (Level-6 / 2)

4. Course general Description:

The purpose of this course is to provide the students with solid foundations in the basic concepts of programming data structures and algorithms. The main objective of the course is to teach the students how to select and design data structures and algorithms that are appropriate for problems that they might encounter. This course is also about comparing algorithms and studying their correctness and computational complexity. This course offers the students a mixture of theoretical knowledge and practical experience using C++.

5. Pre-requirements for this course (if any):

CS 211

6. Pre-requirements for this course (if any):

7. Course Main Objective(s):

The main objective of the course is to teach the students how to select and design data structures and algorithms that are appropriate for problems that they might encounter. This course is also about comparing algorithms and studying their correctness and computational complexity. This course offers the students a mixture of theoretical knowledge and practical experience using C++.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	44	100

No	Mode of Instruction	Contact Hours	Percentage
2	E-learning		
3	HybridTraditional classroomE-learning		
4	Distance learning		

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	
3.	Field	
4.	Tutorial	30
5.	Others (specify)	
Total		75

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and under	standing		
1.1	Understanding the variety of data structures such as stack, queue, hash tables, trees and graph	К1	Classroom Teaching	Class Test, Mid Exam, Final Exam
1.2				
2.0	Skills			
2.1	Able to implement the insert, delete, and search operations on all the structures presented such as the	S1	Classroom Teaching	Class Test, Mid Exam, Final Exam

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
	efficiency trade-offs of using arrays, hash tables, linked lists, and trees.			
2.2	Implementandevaluate some of datastructure such as stack,queueandgraphstructureisrequiredto solve a problem.	S2	Mini Project, Lab Exercises	Lab Based Assignments, Mini Project
3.0	Values, autonomy, and	d responsibility		
3.1	Students learn how to solve problems using algorithms and data structures. They work as team in mini project and do exam individually	V1	Classroom Teaching, Mini Project	Class Test, Mid Exam, Final Exam
3.2				

C. Course Content

No	List of Topics	Contact Hours
1.	Data Design and Implementation (algorithm analysis, growth of functions, ADTs)	9
2.	Unsorted lists (Array-based, Linked Lists)	8
3.	Stacks (Array-based, Linked Lists)	8
4.	4. Queues (Array-based, Linked Lists)	
5.	5. Programming with Recursion, Binary Search Trees	
6.	Hashing	8
7.	Graphs (DFS, BFS)	8
8.	Sorting (selection, bubble)	9
9.	Searching,	8
	Total	75

Assessment Percentage of Total No **Assessment Activities *** timing **Assessment Score** (in week no) Week 4 and 8 5% 1. Quizzes Week 3, 7 and 9 15% 2. Assignments 3. Mid Term Week 7 25% 4. Project Every Week 15% 40% 5. **Final Exam** Week 12

D. Students Assessment Activities

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Nell Dale, "C++ Plus Data Structures", Jones & Bartlet Learning; 5th ed. (2011). ISBN-10: 1449646751, ISBN-13: 978-1449646752.
Supportive References	
Electronic Materials	
Other Learning Materials	Dev C++/Visual studio C++

2. Required Facilities and equipment

Items	Resources
facilities	Class Room, PC laboratory
(Classrooms, laboratories, exhibition rooms,	
simulation rooms, etc.)	
Technology equipment	LCD Projector, Dev C++/Visual studio C++
(projector, smart board, software)	
Other equipment	
(depending on the nature of the specialty)	

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Peer faculty members	Review
Effectiveness of Students assessment	Students	Survey
Quality of learning resources		
The extent to which CLOs have been achieved		

Assessment Areas/Iss	ues	Assessor	Assessment Methods	
Other				
Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)				
Assessment Methods (Direct, In	direct)			
G. Specification Approval				
COUNCIL /COMMITTEE	CS COUN	ICIL		
REFERENCE NO.				
DATE				
REFERENCE NO.				

