

Course Specification (Bachelor)

Course Title: Artificial Intelligence

Course Code: CS424

Program: Computer Science

Department: Computer Science

College: Computer and Information Sciences

Institution: Majmaah University

Version: 2

Last Revision Date: 31 May 2023

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment	
Methods	4
C. Course Content	5
D. Students Assessment Activities	5
E. Learning Resources and Facilities	6
F. Assessment of Course Quality	6
G. Specification Approval	6

A. General information about the course:

1. Course Identification

1. C	Credit hours: (3	3)			
3(3,	,1,0)				
2. 0	Course type				
Α.	□University	College	🛛 Department	□Track	□Others
В.	🖾 Required		□Elect	ive	
3. Level/year at which this course is offered: (L8/Y4)					

4. Course general Description:

Artificial intelligence (AI) is a research field that studies how to realize the intelligent human behaviors on a computer. The ultimate goal of AI is to make a computer that can learn, plan, and solve problems autonomously. The main research topics in AI include: problem solving, reasoning, planning, natural language understanding, computer vision, automatic programming, and machine learning, and so on.

5. Pre-requirements for this course (if any):

MH121 – Discrete Mathematics

6. Pre-requirements for this course (if any):

7. Course Main Objective(s):

(a) Equipping students with necessary knowledge and skills required to be successful in building much needed intelligent computer systems based on the solid foundations of Computer Science and Information Technology.

(b) Providing students techniques to develop, maintain, and utilize intelligent systems in many life applications.

(c) Familiarizing students with advanced topics in AI using Lisp and Prolog languages.

(d) Developing creative capacities for the design, implementation, and analysis of computer programs that reason and/or act intelligently

(e) Learning to analyze and experimentally evaluate designs and implementations of the intelligent computer programs.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100%
2	E-learning		
	Hybrid		
3	Traditional classroom		
	E-learning		
4	Distance learning		

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	15
3.	Field	
4.	Tutorial	
5.	Others (specify)	
Total		60

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and under	standing		
1.1				
1.2				
2.0	Skills			
2.1	Students learn how to design, implement and evaluate an Al algorithm and write the program for the same.	S2	Mini Project, Lab Exercises	Lab Based Assignments, Mini Project
2.2	Students apply science theory and software development to find a solution of practical problem.	S4 [CS]	Mini Project, Lab Exercises	Lab project

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
2.3	Students learn how to apply knowledge of computing to find the best solution to a certain problem.	S5	Classroom Teaching	Midterm Exam, Final Exam
3.0	Values, autonomy, and	d responsibility		
3.1	Students will learn how to build and run an intelligent agent using specific hardware and software programming tools as a team.	V1	Mini Project, Lab Exercises	Oral Exam

C. Course Content

No	List of Topics	Contact Hours
1.	Introduction: Definitions, History of AI	4
2.	Intelligent Agents	8
3.	Problem Solving by Searching	12
4.	Informed Search and Exploration	8
5.	Constraint Programming	4
6.	Knowledge Representation & Reasoning	4
7.	Games & First Order Logic	4
8.	Inference	8
9.	Machine Learning	8
	Total	60

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Exam 1	8	20%
2.	Exam 2	13	20%
3.	Lab Project	15	20%
4.	Final Exam	16	40%

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach", Prentice Hall; 3rd ed. (2009). ISBN-10: 0136042597, ISBN-13: 978-0136042594
Supportive References	
Electronic Materials	
Other Learning Materials	

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Classroom, lab, robots, PCs
Technology equipment (projector, smart board, software)	Data show
Other equipment (depending on the nature of the specialty)	-

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students	Indirect
Effectiveness of Students assessment	Instructor	Direct
Quality of learning resources	Instructor	Direct
The extent to which CLOs have been achieved	Instructor	Direct/Indirec
Other		

Other

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	COMPUTER SCIENCE DEPARTMENT
REFERENCE NO.	
DATE	

