



# Course Specification (Bachelor)

Course Title : Computer Vision

Course Code: CS460

**Program: Computer Science** 

**Department: Computer Science** 

**College: Colleague of Computer and Information Sciences** 

Institution: Majmaah University

Version: Fall'23

Last Revision Date: 11 September 2023







### **Table of Contents**

| A. General information about the course:                                          | 3 |
|-----------------------------------------------------------------------------------|---|
| B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment<br>Methods | 4 |
| C. Course Content                                                                 |   |
| D. Students Assessment Activities                                                 | 5 |
| E. Learning Resources and Facilities                                              | 6 |
| F. Assessment of Course Quality                                                   | 6 |
| G. Specification Approval                                                         | 7 |





#### A. General information about the course:

#### **1.** Course Identification

#### 1. Credit hours: 3(2,2,0)

#### 2. Course type

| Α.                                                                       | □University | □College | □Department | 🛛 Track | □Others |
|--------------------------------------------------------------------------|-------------|----------|-------------|---------|---------|
| В.                                                                       | □Required   |          | □Elect      | ive     |         |
| <b>3.</b> Level/year at which this course is offered: (Level 9/10 year ) |             |          |             |         |         |

#### 4. Course general Description:

This course provides an introduction to computer vision, including fundamentals of image formation, camera imaging geometry, feature detection and matching, stereo, motion estimation and tracking, image classification, scene understanding, and deep learning with neural networks. Implementation of various algorithms will be done in python language.

#### 5. Pre-requirements for this course (if any):

#### CS 210

#### 6. Pre-requirements for this course (if any):

Nil

#### 7. Course Main Objective(s):

#### **Course Main Objectives**

- 1. To introduce to the theoretical and practical aspects of computing with images
- 2. To cover the techniques of image formation, measurement, and analysis
- 3. To expose to the common methods for robust image matching and alignment
- 4. Highlight the geometric relationships between 2D images and the 3D world
- 5. Giving exposure to object and scene recognition and categorization from images

#### 2. Teaching mode (mark all that apply)

| No | Mode of Instruction                                                       | Contact Hours | Percentage |
|----|---------------------------------------------------------------------------|---------------|------------|
| 1  | Traditional classroom                                                     | 60            | 100%       |
| 2  | E-learning                                                                |               |            |
| 3  | <ul><li>Hybrid</li><li>Traditional classroom</li><li>E-learning</li></ul> |               |            |
| 4  | Distance learning                                                         |               |            |





#### **3.** Contact Hours (based on the academic semester)

| No    | Activity          | Contact Hours |
|-------|-------------------|---------------|
| 1.    | Lectures          | 45            |
| 2.    | Laboratory/Studio | 15            |
| 3.    | Field             |               |
| 4.    | Tutorial          |               |
| 5.    | Others (specify)  |               |
| Total |                   | 60            |

## **B.** Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

| Code | Course Learning Outcomes                                                                                    | Code of<br>CLOs<br>aligned<br>with<br>progra<br>m | Teaching<br>Strategies      | Assessment<br>Methods                          |
|------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------|------------------------------------------------|
| 1.0  | Knowledge and understanding                                                                                 |                                                   |                             |                                                |
| 1.1  |                                                                                                             |                                                   |                             |                                                |
| 1.2  |                                                                                                             |                                                   |                             |                                                |
|      |                                                                                                             |                                                   |                             |                                                |
| 2.0  | Skills                                                                                                      |                                                   |                             |                                                |
| 2.1  | CLO1: Students understand the foundation of image formation, measurement, and analysis                      | S2                                                | Classroom Teaching<br>& Lab | Lab Exercise<br>Test, Mid Exam,<br>Final Exam, |
| 2.2  | CLO2: Sstudent's Be familiar with<br>both the theoretical and practical<br>aspects of computing with images | S2                                                | Classroom Teaching          | Exercise Test,<br>Mid Exam, Final<br>Exam,     |
|      | CLO3: Students understand how to                                                                            | S4                                                | Classroom Teaching          | Lab Exercise                                   |

| 2.3 |                                                                                                                                | 54 | Lab                | Test, Mid Exam,<br>Final Exam,             |
|-----|--------------------------------------------------------------------------------------------------------------------------------|----|--------------------|--------------------------------------------|
| 2.4 | CLO4: Students Understand how deep<br>learning models have evolved from a<br>generalization of traditional computer<br>methods | S4 | Classroom Teaching | Exercise Test,<br>Mid Exam, Final<br>Exam, |
|     |                                                                                                                                |    |                    |                                            |

3.0 Values, autonomy, and responsibility





| Code | Course Learning Outcomes                                                             | Code of<br>CLOs<br>aligned<br>with<br>progra<br>m | Teaching<br>Strategies      | Assessment<br>Methods |
|------|--------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------|-----------------------|
| 3.1  | CLO5: Giving exposure to object and scene recognition and categorization from images | V1                                                | Classroom Teaching<br>& Lab | Final Exam,           |
| 3.2  |                                                                                      |                                                   |                             |                       |
|      |                                                                                      |                                                   |                             |                       |

#### **C.** Course Content

| No | List of Topics                                        | Contact Hours |
|----|-------------------------------------------------------|---------------|
| 1. | Image formation and perception, image representation  | 4             |
| 2. | Image geometric transformations                       | 4             |
| 3  | image registration                                    | 4             |
| 4  | Edge detection, image segmentation                    | 4             |
| 5  | Linear filters, Binary image analysis,                | 4             |
| 6  | Background subtraction                                | 4             |
| 7  | Object recognition, template matching, classification | 4             |
| 8  | Object detection and tracking                         | 4             |
| 9  | Mid Review & Mid                                      | 4             |
| 10 | Camera models, stereo vision                          | 4             |
| 11 | Supervised classification algorithms                  | 4             |
| 12 | Visual attributes, Dimensionality reduction           | 4             |
| 13 | Deep learning                                         | 4             |
| 14 | Presentation on Mini Projects                         | 4             |
| 15 | Review                                                | 4             |
|    | Total                                                 | 60            |

#### **D. Students Assessment Activities**

| No | Assessment Activities * | Assessment<br>timing<br>(in week no) | Percentage of Total<br>Assessment Score |
|----|-------------------------|--------------------------------------|-----------------------------------------|
| 1. | Tests                   | Week 5                               | 10%                                     |
| 2. | Mid Term Exam           | Week 9                               | 20%                                     |





| No | Assessment Activities *                          | Assessment<br>timing<br>(in week no) | Percentage of Total<br>Assessment Score |
|----|--------------------------------------------------|--------------------------------------|-----------------------------------------|
| 3. | Exercise                                         | Every Week                           | 10%                                     |
| 4. | Lab Based Assignments/ Mini Project Presentation | week 14                              | 20%                                     |
| 5. | Final Exam                                       | Week 16                              | 40%                                     |
|    |                                                  |                                      |                                         |

\*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

#### **E. Learning Resources and Facilities**

#### **1. References and Learning Resources**

| Essential References     | Computer Vision: Algorithms and Applications by Richard Szeliski,<br>Springer,2011, ISBN 978-1-84882-934-3 |
|--------------------------|------------------------------------------------------------------------------------------------------------|
| Supportive References    | Computer Vision, A Modern Approach, Forsyth and Ponce, 2nd ed., 2011                                       |
| Electronic Materials     |                                                                                                            |
| Other Learning Materials |                                                                                                            |

#### 2. Required Facilities and equipment

| Items                                                                                        | Resources                                               |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------|
| <b>facilities</b><br>(Classrooms, laboratories, exhibition rooms,<br>simulation rooms, etc.) | Classroom                                               |
| <b>Technology equipment</b><br>(projector, smart board, software)                            | PC or Laptop with Windows/Linux, Smart Board, Projector |
| <b>Other equipment</b><br>(depending on the nature of the specialty)                         | Internet Connection                                     |

#### F. Assessment of Course Quality

| Assessment Areas/Issues                        | Assessor          | Assessment Methods |
|------------------------------------------------|-------------------|--------------------|
| Effectiveness of teaching                      | Classroom         | Classroom          |
| Effectiveness of<br>Students assessment        | Course instructor | Direct             |
| Quality of learning resources                  | Students          | Indirect           |
| The extent to which CLOs have<br>been achieved | Students          | Indirect           |
|                                                |                   |                    |

#### Other

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)





| G. Specification Approva |  |
|--------------------------|--|
| COUNCIL /COMMITTEE       |  |
| REFERENCE NO.            |  |
| DATE                     |  |

