

Course Specification (Bachelor)

Course Title: Machine Learning

Course Code: CS 462

Program: Computer Science

Department: Computer Science

College: CCIS-Male

Institution: Majmaah University

Version: 2023

Last Revision Date: 14 September 2023

A. General information about the course:

1. Course Identification

1. Credit hours: (3(3.1.0)

2. C	2. Course type					
A.	□University	□College	□ Departme	nt [□Track	□Others
B. □Required ⊠ Elective						
- 1	2. Level/very at vehicle this serves is afferred, (7)					

3. Level/year at which this course is offered: (7)

4. Course general Description:

The course objective is to study the theory and practice of constructing algorithms that learn (functions) from data. Machine learning is a field with goals overlapping with other disciplines such as statistics, algorithms, engineering, or optimization theory. It also has wide applications in a number of scientific areas such as finance, life sciences, social sciences, or medicine. Python or R Language will be used for implementation of machine learning algorithms.

5. Pre-requirements for this course (if any):

STAT 102

6. Pre-requirements for this course (if any):

7. Course Main Objective(s):

- 1. To know the mathematical principles required for machine learning
- 2. To understand various classification algorithms
- 3. To understand different regression algorithms and neural networks
- 4. To use graph models and ensemble models to solve problems in machine learning
- 5. To understand practical aspects of machine learning

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100%

No	Mode of Instruction	Contact Hours	Percentage
2	E-learning		
3	HybridTraditional classroomE-learning		
4	Distance learning		

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	15
3.	Field	
4.	Tutorial	
5.	Others (specify)	
Total		60

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and under	standing		
2.0	Skills			
2.1	To know the mathematical principles required for machine learning	52	Classroom Teaching	Quizzes, Midterm Exam, Final Exam
2.2	To understand various classification algorithms	S2	Classroom Teaching	Quizzes, Midterm Exam, Final Exam
2.3	To understand different regression	S2	Classroom Teaching	Quizzes, Midterm Exam, Final Exam

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
	algorithms and neural networks			
2.4	To understand practical aspects of machine learning	S4	Mini Project, Lab Exercises	Lab project
3.0	Values, autonomy, and	d responsibility		
3.1	To use graph models and ensemble models to solve problems in machine learning	V1	Mini Project, Lab Exercises	Seminar
3.2				
•••				

C. Course Content

No	List of Topics	Contact Hours
1.	Introduction to Machine Learning and its applications	4
2.	Supervised learning and Bayesian Decision theory	8
3.	Parametric methods Multivariate methods	4
4.	Dimensionality reduction Clustering	8
5.	Nonparametric methods Decision trees	4
6.	Linear discrimination, Multilayer perceptrons -Neural Network	8
7.	Kernel machines , Graphical Models	4
8.	Hidden markov models	4
9.	Ensemble methods: Bagging, Boosting – Random Forests	8
10.	Practical aspects in machine learning Data preprocessing-overfitting-accuracy estimation, parameter and model selection	8
	Total	60

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Assignment 1	4	5%
2.	Quiz 1	5	10%
3.	Mid Term	8	20%
4.	Assignment 2	9	5%
5.	Quiz 1	12	10%
6.	Mini Project/ Seminar	14	10%
7.	Final Exam	16	40%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Introduction to Machine Learning, Ethem Alpaydın, MIT Press, 3rd ed, 2014, ISBN: 978-0-262-02818-9
Supportive References	
Electronic Materials	
Other Learning Materials	

2. Required Facilities and equipment

Items	Resources
facilities	Classroom, Lab
(Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	
Technology equipment	Projector, Smart Board, Python
(projector, smart board, software)	
Other equipment	
(depending on the nature of the specialty)	

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students	Indirect
Effectiveness of Students assessment	Instructor	Direct
Quality of learning resources	Instructor	Direct

Assessment Areas/Issues	Assessor	Assessment Methods
The extent to which CLOs have been achieved		
Other		

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	
REFERENCE NO.	
DATE	

