Logic Design

Dr. Yosry A. Azzam

Binary systems

Chapter 1

Agenda **Binary Systems : Binary Numbers**, Binary Codes, **Binary Logic** ASCII Code (American) Standard Code for Information Interchange) Boolean Algebra (Basic Theorems, Property of Boolean Algebra, **Boolean Functions**) Logic Gates

- Readings
 - Mano: Ch 1 & 2 (until 2-4)
- Objectives
 - Understand Bit & Byte as the foundation of data representation
 - Understand the Binary System, it's operations, conversions and negative number representation
 - Understand the Logic Gates & Binary Logics, which they based on

Data Representation

The complex computer system is built on a
 2-states system (on/off) : The Binary System.

 Binary system is a 2 base numbering system: 0 and 1

Each 0 and 1 is called "BIT" (BInary digiT)

Bits & Bytes

- Bit (0 or 1)
 - Off/On for positive logic
 - On/Off for negative logic

Dec (Bin)

- 0 (0000)
 1 (0001)
 2 (0010)
- **3** (0011)
- 4 (0100)
 5 (0101)
- **6** (0110)
- 0 (0110)
 7 (0111)

- 8 (1000)
- 9 (1001)
 - 10 (1010)
 - 11 (1011)

- 12 (1100)
- 13 (1101)
- 14 (1110)
 15 (1111)
 - 15 (1111)

Bits & Bytes (cont'd)

- Byte : a group of 8 bits, represent :
 - ASCII characters (1 byte is 1 Z character)
 ...
 - Refer to ASCII Table p:23
 - Unicode
 - There are other format of data representation discussed later in the course.
- A (0100 0001) B (0100 0010) 1 Z (0101 1010) 0 (0011 0000) 1 (0011 0001) 9 (0011 1001)

Binary Systems

Binary Numbers

Binary Codes

Binary Logic

Binary and Decimal Numbers

Binary

- $1010 = 1x2^3 + 0x2^2 + 1x2^1 + 0x2^0$
- 0, 1, 10, 11 ...
- Called "Base-2"
- Decimal
 - $7392 = 7x10^3 + 3x10^2 + 9x10^1 + 2x10^0$
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ...
 - Called "Base-10"

Octal

• Based-8 : (0, 1, 2, 3, 4, 5, 6, 7)

Hexadecimal

• Based-16: (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)

Reading : Mano. Chapter 1

A

Binary Systems and Number Base Conversion: Decimal Numbers (Base-10): 0,1,2,3,4,5,6,7,8, and 9 **Ten Digits** 0 and 1 **Binary Numbers (Base-2): Two Digits** Octal Numbers (Base-8): 0..7**Eight Digits** Hexadecimal No. (Base-16): 0.....9.A.B.C.D.E.F 16 Digits and so on.

1.3 Number Base Conversion (1): $(7392)_{10} = 7x10^3 + 3x10^2 + 9x10^1 + 2x10^0$ (2): $(1010.011)_2 = 1x2^3 + 0x2^2 + 1x2^1 + 0x2^0 + 0x2^{-1} + 1x2^{-2} + 1x2^{-3} = (10.375)_{10}$

(3): $(4021.2)_5 = 4x5^3 + 0x5^2 + 2x5^1 + 1x5^0 + 2x5^{-1} = (511.4)_{10}$

(4): Convert decimal 41 to binary, i.e., $(41)_{10} = (\ 2?)_2$ Solution:

Divide by 2	Integer quotent	Remainder	Coefficient	MR Contraction
41/2	=20	+1	1	LSB
20/2	=10	+0	0	
10/2	= 5	+0	0	
5/2	= 2	+1		TAL.
2/2		+0	0	
1/2	= 0	+1		MSB

OR= 101001

Divide by 2	Remainder	149行为为1999年4
41	Sales La	
20	1422 14670	LSB
10	0	
5	0-40	1444 01207
2	1.201	A Part Ship
1 1	0	MSB
0	1	→ Answer=101001

(5): Convert $(0.6875)_{10}$ to binary.

Multiply by 2	Integer quotient	fraction	Coefficient	D.F.F.
0.6875x2		0.3750	111	MSB
0.3750x2	=0	0.7500	0	
0.7500x2	=1	0.5000	1	1 Ste
0.5000x2	=1	0.0000	1	LSB

• Answer: $(0.6875)_{10} = (0.1011)_2$

(6): Convert decimal 153 to octal, i.e., $(153)_{10} = (;?)_8$ Solution:

Divide by 8	Remainder	
153	力行业行为	日本日本市地市地区
19	La I della	LSB
2	3	
0	2	MSB
2001年月		→ Answer=231

 \rightarrow (153)₁₀ = (231)₈

(7): Convert $(0.513)_{10}$ to octal, to seven significant figures

Multiply by 8	Integer quotient	fraction	Coefficient	
0.513x8	=4	0.104	4	MSB
0.104x8	=0	0.832	0	
0.832x8	=6	0.656	6	行為
0.656x8	=5	0.248	5	
0.248x8	=1	0.984		的方
0.984x8	7.502	0.872	7	LSB

Answer: $(0.513)_{10} = (0.406517....)_8$

(8): Convert decimal 153.513 to octal, since we know that $(153)_{10} = (231)_8$ $(0.513)_{10} = (0.406517)_8$ and Then $(153.513)_{10} = (231.406517)_8$ **1.4 Octal and Hexadecimal Numbers** Since $2^3=8$ and $2^4=16$, each octal digit corresponds to three binary digits and each hexadecimal digit corresponds to four binary digits. **Examples:** convert the binary 10110001101011.111100000110 to octal. Answer: (10 110 001 101 011.111 100 000 110)₂ = (2 6 1 5 3 . 7 4 0 $6)_{8}$ convert the binary 10110001101011.111100000110 to Hexadecimal $(10 \ 1100 \ 0110 \ 1011 \ . \ 1111 \ 0000 \ 0110)_2$ Answer: = (2 C 6 B . F 0) $(6)_{16}$

Binary Numbers : Conversions 2 • Octal $(2^3 = 8)$ • $(10110001101011.111100000110)_{2}$ • (26153.7406)₈ • Hexadecimal $(2^4 = 16)$ • $(10110001101011.111100000110)_{2}$ 10 1100 0110 1011.1111 0000 0110 C 6 B . F 2 0 6 • (2C6B.F06)₁₆

Binary Numbers : Operations

101101 +100111 1010100

Summation

Subtraction

101101 -100111 000110

 Multiplication
 1011 101
 101
 101
 101
 1011
 1011
 1011

Two's complement notation systems

a. Using patterns of length three

Bit	Value		
pattern	represented		
011	3		
010	2		
001	1		
000	0		
111	-1		
110	-2		
101	-3		
101	-4		

	207
Bit pattern	Value represented
0111	7
0110	6
0101	5
0100	4
0011	3
0010	2
0001	1
0000	0
1111	-1
1110	-2
1101	-3
1100	-4
1011	-5
1010	-6
1001	-7
1000	-8

b. Using patterns of length four

Diminished Radix Complements

- Complements are used in digital computers for simplifying the subtraction operation and for logical manipulation.
- Given a number N in base r having n digits, the (r-1)'s complement of N is defined as

$$(t^n - 1) - N$$

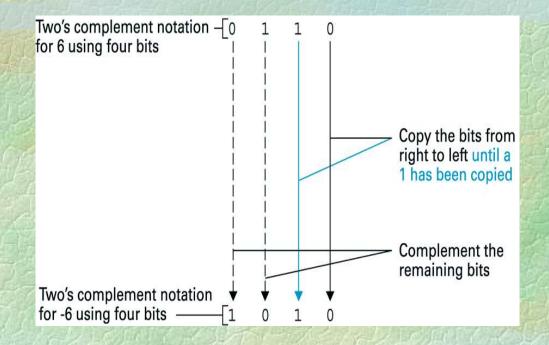
- For decimal numbers, r = 10 and r-1 = 9 So,
- The 9's complement of N is $(10^{n} 1) N = 999...99 N$
- For binary numbers, r=2 and r-1=1 so,
- The 1's complement of N is $(2^n-1)-N=111...111-N$

Radix Complements

The radix complement of an n-digit number N in base r is defined as rⁿ-N for N≠0 and 0 for N=0. *i.e.* the radix complement= diminished radix complement +1

Complements

- The complement of 012398 is
 - 9's complement (diminished radix complement)
 - $(999999)_{10}$ - $(012398)_{10}$ = $(987601)_{10}$
 - 10's complement (radix complement)
 - $(987602)_{10} = (987601)_{10} + 1 = (987602)_{10}$ or:
 - $(1000000)_{10}$ - $(012398)_{10}$ = $(987602)_{10}$
- The complement of 1101100 is
 - 1's complement (diminished radix complement)
 - $(1111111)_2$ $(1101100)_2$ = **0010011**
 - 2's complement (radix complement)
 - $(1000000)_2$ $(1101100)_2$ = **0010100**


Complements (cont'd.)

•The *(r-1)'s* complement of octal or hexadecimal numbers is obtained by subtracting each digit from 7 or F (decimal 15) respectively

Examples:

(1): 10's complement of $(52520)_{10} = 10^5 - 52520 = 47480$

- (2): 10's complement of $(246700)_{10}$ is 753300
- (3): 10's complement of $(0.3267)_{10} = 1.0-0.3267 = 0.6733$
- (4): 2's complement of $(101100)_2 = (2^6)_{10} (101100)_2 = (1000000)_2 (101100)_2 = (010100)_2$
- (5): 2's complement of $(0.0110)_2 = (2^0)_{10} (0.0110)_2 = (1-0.0110)_2 = (0.1010)_2$

Subtraction with Complement

10's complement 10's complement: +96750
 Subtract 72532 - 3250

Sum: 169282 Remove end carry: -100000

2's complement

Answer: 69282

• Subtract 1010100 - 1000011

1010100 2's complement: +0111101

Sum: 10010001 Remove end carry: -10000000

Answer: 0010001

Signed Binary Numbers 1

- Due to hardware limitation of computers, we need to represent the negative values using bits. Instead of a "+" and "-" signs.
- Conventions:
 - 0 for positive
 - 1 for negative

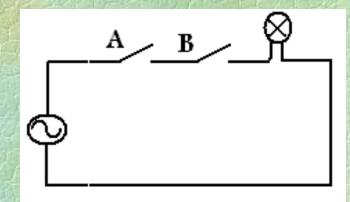
Signed Binary Numbers 2

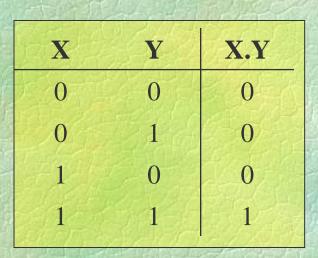
- $(9)_{10} = (0000\ 1001)_2$
- I. Signed magnitude (used in ordinary arithmetic):
 - $(-9)_{10} = (1000\ 1001)_2$
 - Changing the first "sign bit" to negative
- 2. Signed 1's complement:
 - $(-9)_{10} = (1111\ 0110)_2$
 - Complementing all bits including sign bit
- 3. Signed 2's complement:
 - $(-9)_{10} = (1111\ 0111)_2$
 - Taking the 2's complement of the positive number

Signed Binary Numbers 3

Decimal	Numbers Signed-2's complement	Signed-1's complement	Signed magnitude
	0111	0111	0111
+7 +6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0		1111	1000
-1	1111	1110	1001
-2	1110	1101	1010
-3	1101	1100	1011
-4	1100	1011	1100
-5	1011	1010	1101
-6	1010	1001	1110
-7	1001	1000	1110
-8	1000	1000	1001

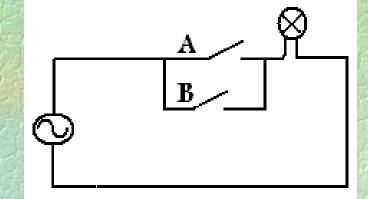
Arithmetic Addition and Subtraction

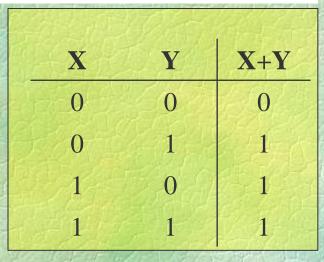

\$1	Problem in base ten				nswer in ase ten	
	-	3 2	→	$ \begin{array}{r} 0011 \\ + 0010 \\ 0101 \end{array} $	\rightarrow	5
	States and the second	-3 -2	→	1101 + 1110 1011	\rightarrow	-5
		7 -5	→	0111 + 1011 0010	\rightarrow	2
+6 +13	0000011 0000110	a state of the second se	24	E UNIT UNITED	111101 000110	A STATE OF A STATE OF
+19	0001001	1	+	7 0	000011	1
+ 6 - 13	000001			A Property and the	L111101 L111001	1 part and a lar
- 7	111110	01	Sec.	19 :	110110	01


Binary Logic

- Binary Logic: Consists of Binary Variables and Logical Operations
- Basic Logical Operations:
 - AND
 - OR
 - NOT
- <u>Truth tables</u>: Table of all possible combinations of variables to show relation between values

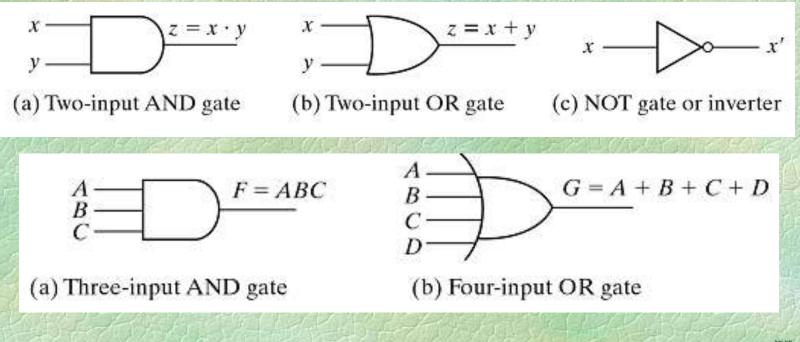
Logical Operation: AND


- Value "1" only if all inputs are "1"
- Acts as electrical switches in series
- Denote by "."

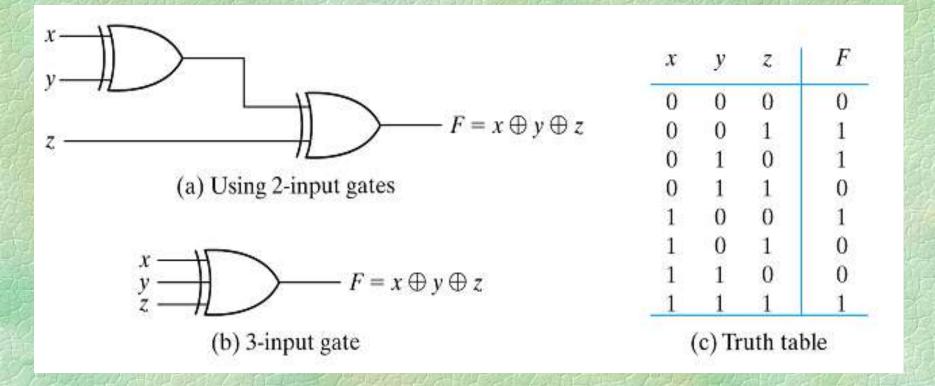


Logical Operation: OR

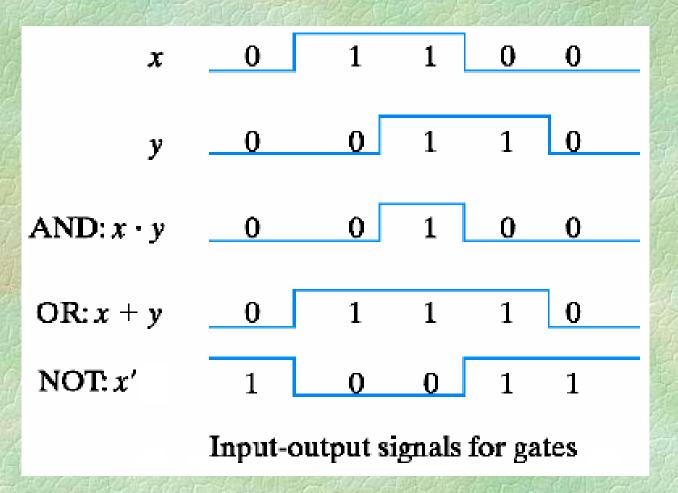
- Value "1" if any of the inputs is "1"
- Acts as electrical switches in parallel
 Denote by "+"



Logical Operation: NOT


- Reverse the value of input
- Denote by complement sign ($!x \text{ or } x' \text{ or } \overline{x}$).
- Also called "inverter"

Logic Gates


- Is electronic digital circuits (logic circuits) [Mano p.29-30]
- Is blocks of hardware Called "digital circuits", "switching circuits", "logic circuits" or simply "gates"

X-OR Gates

Input-Output Signals

Binary Signals Levels

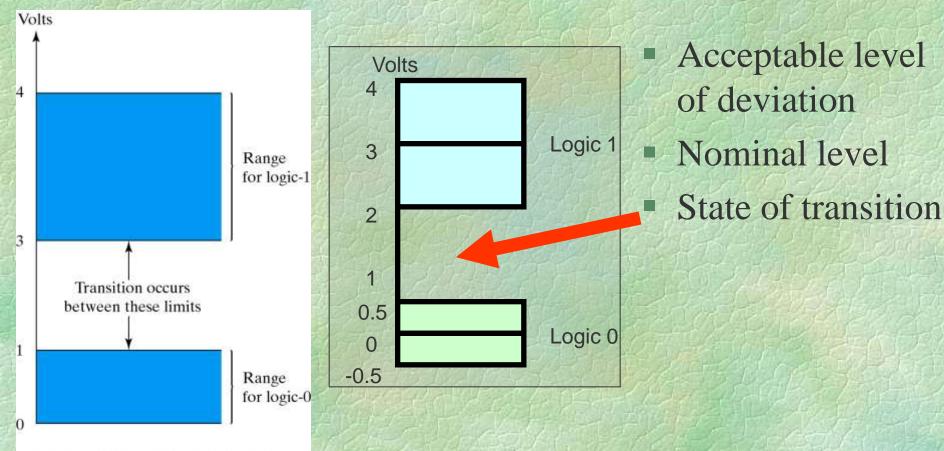
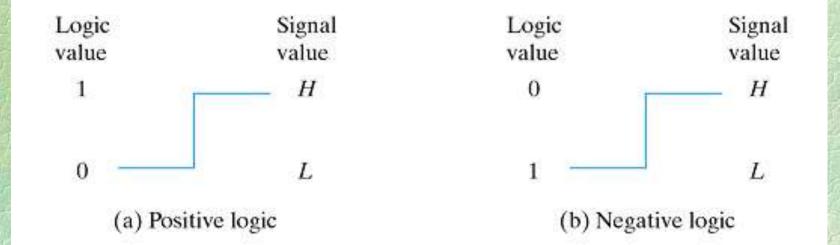



Fig. 1-3 Example of binary signals

Positive and negative logic

BCD Code

- Although the binary number system is the most natural system for a computer, most people are more accustomed to decimal system.
- Convert decimal numbers to binary, perform all arithmetic calculations in binary and then convert the binary results back to decimal.
- So, we represent the decimal digits by means of a code that contains 1's and 0's.
- Also possible to perform the arithmetic operations directly with decimal numbers when they are stored in coded form.

BCD Code

- Ex1: BCD for $(396)_{10}$ is $(0011 \ 1001 \ 0110)_{BCD}$ • Ex2: $(185)_{10} = (0001 \ 1000 \ 0101)_{BCD} = (10111001)_2$
- So, the BCD has 12 bits, but binary equivalent has 8 bits

BCD Addition

- 4 (0100	4	0100	8	1000	公司
+ 5 (0101	+8	1000	+9	1001	F
9	1001	12	1100	17	10001	
12.526	国有		+ 0110	6343	+ 0110	T
S. P. D.		Paul T	1 0010		1 0111	5
Binary (Carry	1	1	and a		THE REAL
6034		0001	1000	0100	184	1P
		+ <u>0101</u>	0111	0110	+576	
Binary s	sum	0111	10000	1010		F
Add 6	Eler	E C	0110	0110	the fille	
BCD su	m	0111	0110	0000	760	

Decimal Arithmetic of BCD • Add (+375) + (-240) = +1350 375 Complement of 240 + 9760Discard the end carry 0 135

The 9 in the leftmost position of the second number represents a minus

Other Decimal Codes

Table 1-5 Four Different Binary Codes for the Decimal Digits

Decimal	BCD 8421	2421	Excess-3	8 4-2-1
digit 0 1 2 3 4 5 6 7 8 9	0000 0001 0010 0011 0100 0101 0110 0111 1000 1001	0000 0001 0010 0011 0100 1011 1100 1101 1110 1111	0011 0100 0101 0110 0111 1000 1001 1010 1011 1011 1010	$\begin{array}{c} 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{array}$
Unused bit combi- nations	1010 1011 1100 1101 1110 1111	0101 0110 0111 1000 1001 1010	0000 0001 0010 1101 1110 1111	0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0

	1
TON	Code
Ulav	

Binary	all st	Reflected Code (Gray code)	Decimal Digit
0000		0000	0
0001	1-bit change	0001	
0010	al and	0011	2
0011		0010	3
0100	T Plates	0110	4
0101		0111	5
0110	1-bit change	0101	6
0111	TTT HALL	0100	7
1000		1100	8
1001		1101	9
1010	PIDSE.	1111	10
1011	Constant	1110	1 1 1
1100	122563	1010	12
1101	med At	1011	13
1110		1001	14
1111		1000	15

ASCII Character Code

The ASCII (American Standard Code for Information Interchange)

- 7 bits per character to code 128 characters including special characters (\$ = 0100010)
- It uses 94 graphic characters that can be printed and 34 non-printing characters used for control functions.
- There are 3 types of control characters: format effectors, information separators, and communication control characters.

01001000	01100101	01101100	01101100	01101111	00101110
н	е	1	1	о	
States and the	and the fait man	Sale I To Sale	1 I have the first	ALL PRINTING AND IN	22

ASCII Character Code

 Table 1-7

 American Standard Code for Information Interchange (ASCII)

American	TEAN LIGHT	165 Journa		$b_7 b_6 b_5$	nis Shing nis Shine S	A-RAMA and		
b4b3b2b1	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	Р	og Guit	р
0001	SOH	DC1	!	1	А	Q	a	q
0010	STX	DC2	- 14	2	В	R	b	r
0011	ETX	DC3	#	3	С	S	с	S
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	Е	U	e	u
0110	ACK	SYN	&	6	F	V	f	v
0111	BEL	ETB		7	G	W	g	w
1000	BS	CAN	(8	Н	X	h	x
1001	HT	EM)	9	I III	Y	i	v
1010	LF	SUB	*		J	Z	i	z
1011	VT	ESC	1+ 1P	indistantio	K	In a second	k	1
1100	FF	FS	in diviti u	, <	In the	i	î	1
1101	CR	GS	-	-	M	1	m	1
1110	SO	RS		5	N	1		1
1111	SI	US	i	2	0	-	n	DEI

ASCII Control Characters

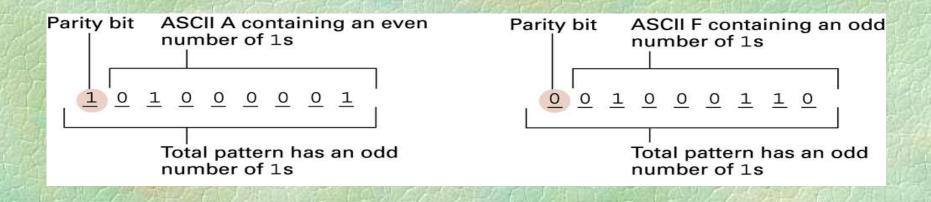
Control characters

	the second s	DLE	Data-link escape
NUL	Null	DCI	Device control 1
SOH	Start of heading	DC2	Device control 2
STX	Start of text	DC3	Device control 3
ETX	End of text End of transmission	DC4	Device control 4
EOT		NAK	Negative acknowledge
ENQ	Enquiry Acknowledge	SYN	Synchronous idle
ACK	Bell	ETB	End-of-transmission block
BS	Backspace	CAN	Cancel
HT	Horizontal tab	EM	End of medium
LF	Line feed	SUB	Substitute
VT	Vertical tab	ESC	Escape
FF	Form feed	FS	File separator
CR	Carriage return	GS	Group separator
SO	Shift out	RS	Record separator
SI	Shift in	US	Unit separator
SP	Space	DEL	Délete

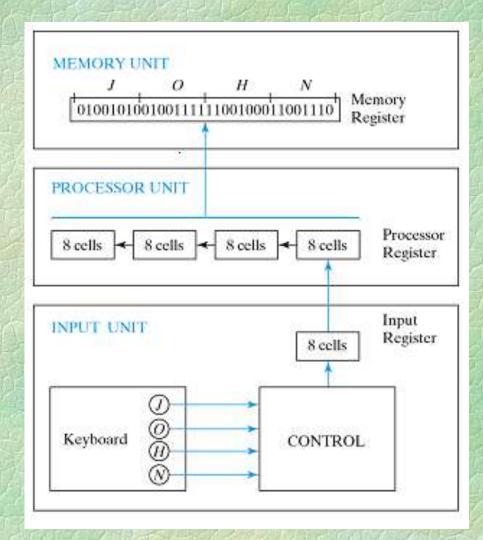
ASCII Character Code (Contd.)

- Although ASCII code is a 7-bitcode, ASCII characters are most often stored one per byte.
- The extra bit are used for other purposes, depending on the application.
- For Ex., some printers recognize 8-bit ASCII characters with the MSB set to 0.
- Additional 128 8-bit characters with the MSB set to 1 are used for other symbols such as the Greek alphabet or italic type font.

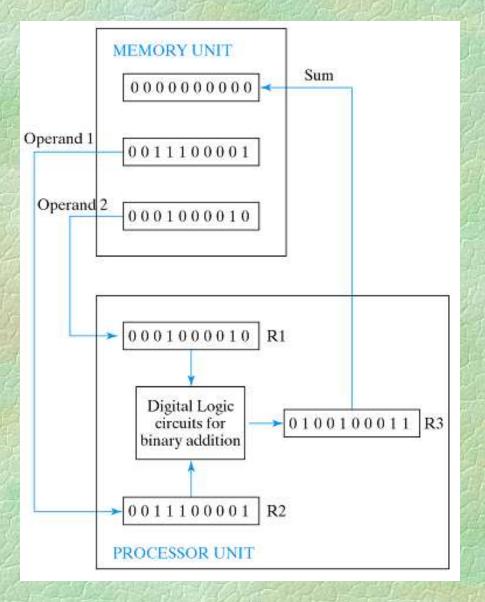
Error Detecting Code


- To detect errors in data communication and processing, the eighth bit is used to indicate parity.
- This parity bit is an extra bit included with a message to make the total number of 1's either even or odd.

 with even parity
 with odd parity


 • Ex: ASCII A = 1000001
 01000001
 11000001

 ASCII T = 1010100
 11010100
 01010100


The ASCII codes for the letters A and F adjusted for odd parity

Transfer of information with registers

Example of Binary information system

Exercises

- Problem 1-2
- Problem 1-3
- Problem 1-10
- Problem 1-16
- My Advise :

Do all problems p: 30-31,