Combinational Logic

Chapter 4

Agenda

- Combinational Logic
 - Design Procedure
 - Adders, Subtractors
 - Analysis Procedure
 - Multilevel Logic Circuit
- Reading
- Mano: Ch 4
- Project #1

Objectives: Understand the nature of Combinational Logic Understand and able to execute the combinational logic design procedure

Combinational Logic : Definition

 Combinational Logic is a logical circuit consists of logic gates whose outputs at any time are determined directly from the present combination of inputs without regard to previous inputs

Analysis Procedure:

F2=AB+AC+BC T1=A+B+C T2=ABC and T3=F2'T1 F1=T3+T2 Therefore, F1=T3+T2=F2'T1 + ABC =(AB+AC+BC)'(A+B+C) + ABC =(A'+B')(A'+C')(B'+C')(A +B+C)+ABC

 T_2 AB B

=A'BC'+A'B'C+AB'C'+ABC

Fig. 4-2 Logic Diagram for Analysis Example

Design Procedure:

1. Define the problem

- 2. Define the input/output variables
- **3. Truth table of the relationships**
- 4. Simplify Boolean functions
- 5. Draw the logic diagram

Constraints:

- 1. Min No. of gates
- 2. Minimum number of inputs to a gate
- 3. Min Propagation time
- 4. Min no. of interconnections

Example: Code Conversion (BCD to Excess-3)

Input BCD					Output Excess-3				
A	B	C	D		W	X	у	Z	
0	0	0	0	1	0	0	1	1	
0	0	0	1		0	1	0	0	
0	0	10	0	2	0	1	0	1	
0	0	1	1		0	1	1	0	
0	1	0	0		0	1	1	1	
0	1	0	1	The second	1	0	0	0	
0	1	1	0	E.	1	0	0	1	
0	1	1	1		1	0	1	0	
1	0	0	0		1	0	1	1	
1	0	0	1		1	1	0	0	

B

Fig. 4-3 Maps for BCD to Excess-3 Code Converter

y=CD+C'D'=CD+(C+D)'X=B'C+B'D+BC'D'=B'(C+D)+BC'D'=B'(C+D)+B(C+D)'W = A + BC + BD = A + B(C + D)

B

B

V

Example: Code Conversion (BCD to Excess-3)

Common Combinational Logic

- Binary Adders
- Half-Adders
- Full-Adders
- **Binary Substractors**
- Half-Substractors
- Full-Substractors
- Decoders/Encoders
- Multiplexers

Binary Adders

- One of the basic arithmetic process in computer system
- One that performs the addition of 2 bits is Half–Adder
- One that performs the addition in 3 bits (2 significant bits and a previous carry) is called Full-Adder

Half-Adder

- 2 Input & 2 output
- The truth table
- Thus the Boolean Function is
- S = x'y+ xy';
- C = xy
- The function cannot be further simplified

Truth Table

Half-Adder Implementations

Full-Adder Truth Table

- 3 Input (x & y as the input and z as the previous carry), & 2 output (s, c)
- The truth table is :

X	Y	Z	С	S
0	0	0	0	0
0	0		0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1		0
1	1	0	1	0
1	1	1	1	1

Full-Adder Map

Fig. 4-6 Maps for Full Adder

Full-Adder Simple Implementation

Logic Expression
S = x'y'z+ x'yz'+ xy'z'+ xyz
C = xy + xz + yz

Implementation

Full-Adder Implementation

 $S=z \oplus (x \oplus y)$ =z' (xy' + x'y) +z(xy' + x'y)' = z'(xy' + x'y) + z(xy + x'y') = xy'z' + x'yz' + xyz + x'y'z

C=z (xy' + x'y) + xy=xy'z + x'yz + xy

10

Fig. 4-8 Implementation of Full Adder with Two Half Adders and an OR Gate

Full-Adder Application

Fig. 4-9 4-Bit Adder

Example: A=1011, B=0011 then S= 1110

Subscript i	3	2		0	
Input carry	0	1	1	0	Ci
Augend	1	0		1	A
Addend	0	0	1	1	Bi
RADA-2		HD A			CALL SALL
Sum	1	1	1	0	Si
Output carry	0	0	1		C _{i+1}

Full-Adder Other Implementation

Fig. 4-10 Full Adder with P and G Shown

 $\begin{array}{lll} P_i = A_i \oplus B_i & S_i = P_i \oplus C_i \\ G_i = A_i B_i & C_{i+1} = G_i + P_i C_i \end{array}$

G_i: Carry generate P_i: Carry propagate

Carry Propagation:

The total propagation time is equal to the propagation delay of a typical gate times the number of gate levels in the circuit.

 C_0 =input carry

 $C_1 = G_0 + P_0 C_0$

 $C_2 = G_1 + P_1 C_1 = G_1 + P_1 (G_0 + P_0 C_0) = G_1 + P_1 G_0 + P_1 P_0 C_0$

 $C_3 = G_2 + P_2 C_2 = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0$

Carry lockahead Generator

C₀=input carry

 $C_1 = G_0 + P_0 C_0$

 $C_2 = G_1 + P_1 C_1 = G_1 + P_1 (G_0 + P_0 C_0) = G_1 + P_1 G_0 + P_1 P_0 C_0$

 $C_3 = G_2 + P_2 C_2 = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0$

Adder with carry lockahead Genertaor

Binary Substractors

- One of the basic arithmetic process in computer system
- One that subtracts 2 and produce their difference is Half-Substractor
- One that subtracts 2 and produce their difference while taking account that 1 have been borrowed by a lower significant stage.
- it is called : Full-Substractor

Half-Substractor

2 Input & 2 output (Borrow & Data)
Boolean Function cannot be simplified

$$D = x'y + xy'$$

B = x'y

Truth table

Full-Substractor

You do it
Truth table
Simplify with K-Map
Draw the Logic Gate

$$B = x'y + x'z + yz$$

45

Adder-Substractor

• The operation A-B =A+ "1's complement of B" +1 = A+ "2's complement of B.

- For unsigned numbers, this gives A-B if A>= B or the 2's complement of (B-A) if A < B.
- For signed numbers the result is A-B provided that there is no overflow.
- The addition and subtraction operations can be combined into one circuit with one common binary adder and including an X-OR gate with each full adder.

Adder-Substractor

Fig. 4-13 4-Bit Adder Subtractor

When M=0, the circuit is adder (since $B \oplus 0 = B$), and when M=1, the circuit is subtractor (since $B \oplus 1 = B'$).

Overflow

Carries: 0	1		carries:1	0
+70	0	1000110	-70	1 0111010
+80	0	1010000	-80	1 0110000
+150	1	0010110	-150	0 1101010

Binary Multiplier

۲۸

4 by 3 Binary Multiplier

49

Decoder

Inputs			Outputs								
X	у	Z	D ₀	D ₁	<i>D</i> ₂	D3	<i>D</i> ₄	D5	D ₆	D ₇	
0	0	0	1	0	0	0	0	0	0	0	
0	0	1	0	1	0	0	0	0	0	0	
0	1	0	0	0	1	0	0	0	0	0	
0	1	1	0	0	0	1	0	0	0	0	
1	0	0	0	0	0	0	1	0	0	0	
1	0	1	0	0	0	0	0	1	0	0	
1	1	0	0	0	0	0	0	0	1	0	
1	1	1	0	0	0	0	0	0	0	1	

Fig. 4-18 3-to-8-Line Decoder

۳.

2-4 Line Decoder (1-4 line Demultiplexer)

