

Course Specifications

Institution:College of Science at Az ZulfiAcademic Department :Computer Science and InformationProgramme :CSICourse :Introduction to RoboticsCourse Coordinator :Noureldin LabanProgramme Coordinator :Dr. Yosry Azzam.Course Specification Approved Date :22 ./ 12 / 1435 H

This form compatible with NCAAA 2013 Edition

Course Identification and G	eneral In	formati	on			
1 - Course title : Introduction	to Robotic	s Cour	se Code:	CSI 4	42	
2. Credit hours : 3 (2 Lec	cture + 2 L	ab)				
3 - Program(s) in which the co	urse is of	fered:	CSI			
4 – Course Language : Englis	sh					
5 - Name of faculty member re	esponsible	e for the	course:	Nourel	ldin La	ban
6 - Level/year at which this co	urse is of	fered :	Elective	level		
7 - Pre-requisites for this cours	se (if any)):				
Artificial Intelligence CSI	411					
8 - Co-requisites for this cours	e (if any)	:				
• N/A						
9 - Location if not on main car	npus :					
• N/A						
10 - Mode of Instruction (mark	c all that a	apply)		0		
A - Traditional classroom		What perc	entage?	80	%	
B - Blended (traditional and online)		What perc	entage?	5	%	
D - e-learning		What perc	entage?	5	%	
E - Correspondence		What perc	entage?	•••••	%	
F - Other	\checkmark	What perc	entage?	10	%	
Comments :						
One touth of the course is measure	d mainly is	acida vida	o locturos	of other	ringten	atora

worldwide. They illustrate the same topics that I introduced in my lectures with a different presentation.

B Objectives

What is the main purpose for this course?

This course provides an overview of robot mechanisms, dynamics, and intelligent controls. Topics include planar and spatial kinematics, and motion planning; mechanism design for manipulators and mobile robots, multi-rigid-body dynamics, control design, actuators, and sensors; wireless networking, task modeling, human-machine interface, and embedded software. The purpose of this course is to

- 1. Provide students with the basic concepts of Robotics.
- 2. Acquaint students with basic robot components, how to interface a computer with the real world, different types of sensors and their use, different types of actuators and their use, and forward and inverse kinematics of simple two link robotic manipulators.
- 3. Introduce students to the relationships between Robotics and Artificial Intelligence.
- **4.** Enable students to be efficient in their work.

Briefly describe any plans for developing and improving the course that are being implemented :

- 1. Using group discussion Updating the materials of the course to cover the new topics of the field.
- 2. Encourage students to design and develop some Robotic applications.

C. Course Description 1. Topics to be Covered

List of Topics	No. of Weeks	Contact Hours
1. Introduction: background, the mechanics and control of mechanical manipulators, notation.	1	4
2. Spatial descriptions and transformations: descriptions, mappings, operators, transformation arithmetic, transform equations, transformation of free vectors.	2	8
3. Manipulator kinematics: link description, link-connection description, convention for affixing frames to links, manipulator kinematics, actuator space, joint space, and Cartesian space.	2	8
 Inverse manipulator kinematics: solvability, the notion of manipulator subspace when n <6, algebraic vs. geometric, algebraic solution by reduction to polynomial, Pieper's solution when three axes intersect, the standard frames, solving a manipulator. 	2	8
 Velocities and static forces: notation for time-varying position and orientation, linear and rotational velocity of rigid bodies, more on angular velocity, motion of the links of a robot, velocity "propagation" from link to link, Jacobean's, singularities. 	2	8
6. Manipulator dynamics: acceleration of a rigid body, mass distribution, newton's equation, Euler's equation, the structure of a manipulator's dynamic equations, Dynamic simulation.	2	8
7. Trajectory generation: general considerations in path description and generation, joint-space schemes, Cartesian-space schemes, geometric problems with Cartesian paths, path generation at run time.	2	8
8. Manipulator-mechanism design: kinematic configuration, quantitative measures of workspace attributes, redundant and closed-chain structures, actuation schemes.	2	8

2. Course components (total contact hours and credits per semester):

	Lecture	Tutorial	Laboratory	Practical	Other:	Total
Contact Hours	30	30	-	-	-	60
Credit	30	15	-	-	-	45

3. Additional private study/learning hours expected for students per week.

5 Hours

4. Course Learning Outcomes in NQF Domains of Learning and Alignment with Assessment Methods and Teaching Strategy

جامعة المجمعة

	NQF Learning Domains And Course Learning Outcomes	Course Teaching Strategies	Course Assessment Methods
1.0	Knowledge		
1.1	The know-how of the fundamentals of robotics	Lectures.	Written
	in the core areas of mechanics, control,	Lab	Exam
	perception, artificial intelligence, and	demonstrations.	Homework
	autonomy.	Case studies.	assignments
1.2	Perform spatial transformations associated	Individual	Lab
	with rigid body motions.	presentations.	assignments
1.3	Perform kinematics analysis of robot systems		Class
			Activities
			Quizzes
2.0	Cognitive Skills		
2.1	Understand concept of sensors and actuators		Written
	and Identify sensors and actuators required for	Lectures.	Exam
	specific applications.	Lab	Homework
2.2	Perform basic calculation associated with	demonstrations.	assignments
	trajectory planning.	Case studies.	Lab
		Individual	assignments
		presentations.	Class
		Brainstorming.	Activities
			Quizzes
3.0	Interpersonal Skills & Responsibility		
3.1	Understand basic issues and programming	Small group	Written
	principles associated with robot control.	discussions.	Exam
3.2	Implement hardware and software to build a	Whole group	Homework
	robot that can perform a task.	discussions.	assignments
	L.	Brainstorming.	Lab
		Presentations.	assignments
			Class
			Activities
			Quizzes

جامعة المجمعة

	NQF Learning Domains And Course Learning Outcomes	Course Teaching Strategies	Course Assessment Methods
4.0	Communication, Information Technology, Nume	rical	
4.1	work cooperatively in a small group	Small group	Written
	environment.	discussions.	Exam
4.2	Save time and space in each task.	Whole group	Homework
		discussions.	assignments
		Brainstorming.	Lab
		Presentations.	assignments
			Class
			Activities
			Quizzes
5.0	Psychomotor		
5.1	N/A		

5. Schedule of Assessment Tasks for Students During the Semester:

	Assessment task	Week Due	Proportion of Total Assessment
1	First written mid-term exam	6	15%
2	Second written mid-term exam	12	15%
3	Presentation, class activities, and group discussion	Every week	10%
4	Homework assignments	After Every chapter	10%
5	Experiment of presented designs	Every two weeks	10%
6	Final written exam	16	40%

D. Student Academic Counseling and Support

Office hours: Sun: 10-12, Mon. 10-12, Wed. 8-10 Office call: Sun. 12-1 and Wed 12-1

Email: n.laban@mu.edu.sa

E. Learning Resources

1. List Required Textbooks :

• John J. Craig, Introduction to Robotics: Mechanics and Control, Third Edition. Prentice Hall, 2004

2. List Essential References Materials :

- Saeed B. Niku, Introduction to Robotics: Analysis, Control, Applications, Wiley; 2nd edition, 2010.
- •

3. List Recommended Textbooks and Reference Material :

• IEEE Robotics & Automation Magazine.

4. List Electronic Materials :

- <u>http://see.stanford.edu/see/courseinfo.aspx?coll=86cc8662-f6e4-43c3-a1be-b30d1d179743</u>
- <u>http://ocw.mit.edu/courses/mechanical-engineering/2-12-introduction-to-robotics-fall-2005/</u>

5. Other learning material :

• Video and presentation are available with me

F. Facilities Required

1. Accommodation

• Classroom and Lab, as those that are available at college of science at AzZulfi.

2. Computing resources

• Smart Board

3. Other resources

• N/A

G Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching:

- Questionnaires (course evaluation) achieved by the students and it is electronically organized by the university.
- Student-faculty management meetings.

2 Other Strategies for Evaluation of Teaching by the Program/Department Instructor :

- Discussion within the staff members teaching the course
- Departmental internal review of the course.

3 Processes for Improvement of Teaching :

- Periodical departmental revision of methods of teaching.
- Monitoring of teaching activates by senior faculty members.
- Training course.

4. Processes for Verifying Standards of Student Achievement

- Reviewing the final exam questions and a sample of the answers of the students by others.
- Visiting the other institutions that introduce the same course one time per semester.
- Watching the videos of other courses by international institutions.
- •

5 Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement :

- Course evaluation
- Exam evaluation
- Improvement plan

Course Specification Approved Department Official Meeting No (6) Date 22 / 12 / 1435 *H*

Course's Coordinator

Department Head

Name :	Noureldin Laban	Name :	Dr. yosry Azzam
Signature :		Signature :	
Date :	17/ 12 / 1435 H	Date :	22 ./ 12 / 1435 H

