
Data Structures questions David Keil 9/08 1

Note:

For some questions, answers are provided. These answers need to be checked to see that they match
the questions, number for number.

Some other checking and editing is needed, including deletion of questions that are trivial or based on
an expectation of too-detailed knowledge.

The objective of this set of questions is to help students focus on the main facts, terms, and ideas that
underly the course material.

Study questions

T2
T3
T4
T5
T6
T7
T8
T9

Data Structures questions David Keil 9/08 2

Study questions on topic 1:
Data types: Numeric, array, and class

1. Collections and arrays
A. Multiple-choice, T/F
1. An abstract data type is (a) a compound type and its

associated operations; (b) a simple type and associated
operations; (c) a compound type independent of operations;
(d) a simple type independent of operations; (d) none of
these

2. What kind of data structure would you use to store
information about a set of customers and to look up a
customer's address knowing only the last name?
(a) structure; (b) array of structures; (c) two-dimensional
array; (d) string; (e) structure containing a string for each
customer

3. A collection typically consists of (a) many items of different
types; (b) just one item; (c) many structures or objects of the
same type; (d) an array of characters

4. An abstract data type is defined by (a) loops; (b) data
attributes; (c) operations; (d) loops and attributes;
(e) attributes and operations.

5. If a sales transaction has an item ID, a customer ID, and a
date, then what kind of data structure would you use to store
information about a set of sales items? (a) structure;
(b) array of structures or objects; (c) two-dimensional array;
(d) string; (e) structure containing a string for each customer

6. (a) ; (b) ; (c) ; (d) ; (e) none of these

2. Design: divide and conquer
Multiple-choice, T/F
1. Where a problem can be broken down into two problems,

one of which is simple to solve and the other is a smaller
instance of the original problem, one way to solve the
problem is (a) greedy; (b) object-oriented; (c) structured;
(d) recursive

2. Divide-and-conquer refers to the use of (a) intractability;
(b) recursion; (c) dominant expressions; (d) branching;
(e) arithmetic operators

3. A recursive method (a) always calls itself when it runs;
(b) calls itself subject to certain conditions; (c) calls itself
not more than once; (d) never calls itself only once;
(e) uses while to loop

4. (T-F) In a recursive method, when the base case applies, the
method calls itself.

5. (T-F) A recurrence defines a data type by self reference.
6. A recurrence defines a function (a) selectively;

(b) iteratively; (c) exponentially; (d) algorithmically;
(e) redundantly

7. A disadvantage of recursion relates to (a) long-windedness;
(b) greater difficulty of analysis; (c) danger of stack
overflow; (d) slower memory access time; (e) the use of
heap memory

3. Algorithm verification
Multiple-choice, T/F
1. A program's correctness (a) may be proven through testing;

(b) may be proven mathematically; (c) may be proven
through a combination of testing and persuasive language;
(d) can never be proven; (e) none of the above

2. An assert statement is used to (a) perform a search; (b) help
detect syntax errors; (c) help detect logic errors; (d) help
detect user-input errors; (e) document program code

3. In a correct algorithm, a loop invariant is true (a) always;
(b) never; (c) at the start of a loop body; (d) throughout
execution of loop body; (e) sometimes

4. (T-F) It is easy to prove correctness of a program that
works.

5. In an inductive proof, showing that P(0) is true is
(a) the base step; (b) the inductive step; (c) unnecessary;
(d) sufficient to prove P(x) implies P(x + 1); (e) sufficient to
prove P(x) for all x

6. To prove that an algorithm terminates, we usually rely on
(a) recursion; (b) break statements; (c) convergence;
(d) total correctness; (e) partial correctness

7. Total correctness is proven by showing (a) partial
correctness; (b) termination; (c) good test results; (d) partial
correctness and termination; (e) termination and good test
results

8. An inductive proof argues in part that (a) if a certain
assertion is true for n then it is also true for (n+1);
(b) a certain assertion is not true for any value n;
(c) a certain assertion leads to a contradiction; (d) if one
assertion is not true, then a second assertion must be true

9. A valid postcondition is (a) output; (b) input; (c) true
throughout the execution of a loop; (d) true after a series of
statements execute; (e) true under certain conditions
dependent on input.

4. Searching and sorting
Multiple-choice, T/F
1. (T-F) The binary search is a way to search any array
2. (T-F) To sort an array normally requires swapping data

items that are in order.
3. (T-F) To sort an array normally requires swapping data

items that are out of order.

Data Structures questions David Keil 9/08 3

4. The swap method (a) returns a value; (b) uses value

parameters; (c) uses reference parameters; (d) performs
multiple swapping operations.

5. Which algorithm is most similar to the way many people
would sort a hand of cards? (a) insertion sort; (b) bubble
sort; (c) selection sort; (d) Shell sort; (e) Quicksort

6. Which algorithm finds adjacent elements out of order and
swaps them, until none are found out of order? (a) insertion
sort; (b) bubble sort; (c) selection sort; (d) insertion sort;
(e) Quicksort

7. In Quicksort, the pivot is (a) a subscript; (b) an element
value; (c) a turning point in the execution of the algorithm;
(d) used to leverage performance; (e) none of these

8. A merge algorithm (a) must be recursive; (b) performs a
search; (c) requires two or more sorted arrays; (d) all of
these; (e) none of these

9. (T-F) The binary search is a way to search any array
10. (T-F) To sort an array normally requires swapping data

items that are in order.
11. (T-F) To sort an array normally requires swapping data

items that are out of order.
12. The swap method (a) returns a value; (b) uses value

parameters; (c) uses reference parameters; (d) performs
multiple swapping operations.

13. Which algorithm is most similar to the way many people
would sort a hand of cards? (a) insertion sort; (b) bubble
sort; (c) selection sort; (d) Shell sort; (e) Quicksort

14. Which algorithm finds adjacent elements out of order and
swaps them, until none are found out of order? (a) insertion
sort; (b) bubble sort; (c) selection sort; (d) insertion sort;
(e) Quicksort

15. In Quicksort, the pivot is (a) a subscript; (b) an element
value; (c) a turning point in the execution of the algorithm;
(d) used to leverage performance; (e) none of these

16. A merge algorithm (a) must be recursive; (b) performs a
search; (c) requires two or more sorted arrays; (d) all of
these; (e) none of these Short-answer

5. Algorithm complexity
Multiple-choice, T/F
1. (T-F) The Bubble sort algorithm makes on the order of n

passes through an n-element array.
2. What is the fastest sure way to search for a value in an

unsorted array of numbers? (a) calculate hash value;
(b) scan from beginning to end until found; (c) sort and
perform binary search; (d) choose random elements until the
number is found; (e) no fastest way exists.

3. To efficiently locate the number 9 in an array of random
integers, we would use a (a) linear search; (b) binary search;
(c) Bubble sort; (d) Quick sort; (e) none of these

4. To efficiently locate the number 9 in a sorted array of
random integers, we would use a (a) linear search;
(b) binary search; (c) Bubble sort; (d) Quick sort; (e) none
of these

5. The analysis of algorithms is most concerned with (a)
testing solutions; (b) the documentation of programs;
(c) object orientation; (d) the time complexity of programs;
(e) all of these

6. For a problem of size n, a solution of the worst time
complexity would be (a) 1 (constant time); (b) n (linear);
(c) n squared (quadratic); (d) 2 to the n power (exponential);
(e) none is worst

7. Each step of the binary-search algorithm (a) reduces the size
of the sub-array to be searched by about half; (b) finds the
search key; (c) reports failure; (d) moves one array element;
(e) compares two array elements

8. The time complexity of the binary search is on the order of
(a) 1; (b) n; (c) log2(n); (d) n squared; (e) 2 to the nth power

9. (T-F) The binary search is an efficient way to search any
large array

10. (T-F) A linear search must inspect, on average, about half
the elements in an array.

11. (T-F) To sort an array normally requires swapping data
items that are in order.

12. (T-F) To sort an array normally requires swapping data
items that are out of order.

13. log2(100) is closest to (a) 1; (b) 2; (c) 6; (d) 20; (e) 100
14. log2(1000) is closest to (a) 1; (b) 2; (c) 5; (d) 10; (e) 100
15. (T-F) A binary search should be faster than a linear one.
16. The swap method (a) returns a value; (b) uses value

parameters; (c) uses reference parameters; (d) performs
multiple swapping operations.

17. Which algorithm is most similar to the way many people
would sort a hand of cards? (a) insertion sort; (b) bubble
sort; (c) selection sort; (d) Shell sort; (e) Quicksort

18. Which algorithm finds adjacent elements out of order and
swaps them, until none are found out of order? (a) insertion
sort; (b) bubble sort; (c) selection sort; (d) insertion sort;
(e) Quicksort

19. Which sort has an execution time proportional to n ×
log2(n)? (a) insertion sort; (b) bubble sort; (c) selection sort;
(d) insertion sort; (e) Quicksort

20. In Quicksort, the pivot is (a) a subscript; (b) an element
value; (c) a turning point in the execution of the algorithm;
(d) used to leverage performance; (e) none of these

21. Where f is a function, O(f (n)) means _______ f (n).
(a) exactly; (b) at most; (c) roughly proportional to;
(d) at least; (e) following a specification

22. A merge algorithm (a) takes longer than Quicksort;
(b) performs a search; (c) requires two or more sorted
arrays; (d) all of these; (e) none of these

23. log2(10) is closest to (a) 1; (b) 3; (c) 6; (d) 20; (e) 100
24. log2(1000) is closest to (a) 3; (b) 10; (c) 50; (d) 100;

(e) 1000
25. A linked list is traversed in time (a) O(logn); (b) O(1);

(c) O(n); (d) O(nlogn); (e) O(n2)
26. Big-O notation sets (a) a precise time complexity; (b) a

lower bound; (c) an upper bound; (d) an upper and lower
bound; (e) an indefinite estimate

Data Structures questions David Keil 9/08 4

27. Theta notation sets (a) a precise time complexity;

(b) a lower bound; (c) an upper bound; (d) an upper and
lower bound; (e) an indefinite estimate

28. Big-Omega notation sets (a) a precise time complexity;
(b) a lower bound; (c) an upper bound; (d) an upper and
lower bound; (e) an indefinite estimate

29. (T-F) O(log n) problems are considered intractable.
30. (T-F) O(2n) problems are intractable.
31. (T-F) An algorithm with an O(log n) running time is

considered fast.
32. (T-F) You might get a bonus for finding an algorithm with

an O(2n) running time.
33. Asymptotic analysis relates most closely to the (a) growth of

processor speeds; (b) decline in unprocessed data; (c) rate of
growth of functions; (d) complexity of source files;
(e) constant factors that affect speed

34. (T-F) Algorithm analysis provides us a single formula by
which to determine the best data structure to use

Data Structures questions David Keil 9/08 5

Short-answer

ST 1
1. What is data abstraction?
2. What is the process of defining new data types called?
3. What is a technical term for a structure or object that

contains an array of structures or objects?
4. Name one way to implement a collection in Java.

ST2
1. In Big-O notation, what is the complexity of the binary

search?
2. In Big-O notation, what is the complexity of the Bubble

sort?
3. In Big-O notation, what is the complexity of the selection

sort?
4. In Big-O notation, what is the complexity of the Quicksort?
5. In Big-O notation, what is the complexity of the standard

solution to the Towers of Hanoi problem?
6. Give complexities of the following operations.
 a) Insert a node at the beginning of a linked list.

b) Insert a node at the end of a linked list.
c) Insert a node in order of value.

7. For a linked list of 100 nodes, what is:
a) the worst-case search time, in node accesses?
b) The average search time?
c) The best-case time?

8. What is the running time of linked-list prepend?
9. What is the running time of linked-list insert, given the

address of the node after which the new node is to be
inserted?

10. What is the running time of the operation appending a node
to a singly-linked list? Doubly linked?

11. What is the running time of the linked-list operation of
inserting a node at the end, given the address of the first
node?

12. What is the running time of linked-list operation of deleting
all nodes?

13. What is the running time to search a linked list of n items
organized in ascending order?

14. True/false:
(a) O(n2) = O(2n2)
(b) O(n2) = O(100n)
(c) O(50n) = O(n / 2)
(d) O(n) = O(lg n)
(e) O(lg n) = O(lg n + 1000)

15. Name a sorting algorithm that is of O(n2) time complexity
16. Name a sorting algorithm that is O(n lg n) average-case
17. In Big-O notation, what are the worst and average-case

complexities of
(a) the binary search?
(b) the Bubble sort?
(c) Quicksort?
(d) the solution to the Towers of Hanoi problem?

18. If the Bubble sort were improved so that it would be twice
as fast, would its complexity category necessarily change, in
Big-O notation? Why or why not?

19. Consider this sorting algorithm:
for i ← n to 1
 for j ← 1 to n
 if A[i] > A[j]
 swap A[i] with A[j]
(a) Is this slower or faster than the selection sort algorithm
presented on the slide?
(b) How much slower or faster?
(c) Discuss its running time in Big-O terms.

20. Find the solution, in big-O notation, for T(n) =
(a) ⎧ 1 if n = 0 ⎨ ⎩ 2 + T(n−1) otherwise
(b) ⎧ 2 if n = 1 ⎨ ⎩ 2 + T(n−1) otherwise
(c) ⎧ 1 if n ≤ 1 ⎨ ⎩ n + T(n−1) + 3 otherwise
(d) ⎧ 1 if n ≤ 2 ⎨ ⎩ 2 + T((n−1) / 2) otherwise
(e) ⎧ 1 if n = 0 ⎨ ⎩ n + ((n−1) / 2) otherwise
21. Simplify:

(a) O(3n2 + 2n + 100)
(b) O(n / 2 + 2 lg n)
(c) O((n + 2)(n − 2))
(d) O(60 lg n + 500)

22. What is the best performance obtainable from an algorithm
that uses comparisons in solving the problem of sorting an
n-element array?

23. Name two sorting algorithms whose time complexity in Big-
O notation is not the same.

Short-answer
1. What loop invariant can be used to prove that the algorithm

below returns true exactly when parameter test is smaller
than any element of array A?
Is-lower (A, test).
For k ← 1 to Size(A)
 if A[k] < test
 return false
return true

2. The fact that a value converges during program execution is
evidence of the __________ of an algorithm

3. What kind of comment inside a while statement would help
establish that the statement does its job?

4. What two kinds of comment would help establish that a
certain sequence of Java statements bring the program from
a certain state of affairs to the desired one?

5. Loop invariants, preconditions, and postconditions help
document the ____________ of an algorithm.

6. What are the components of a proof of correctness of an
algorithm?

7. What special algorithmic technique is used in the solution to
the Towers of Hanoi problem? How many times in the
pseudocode?

Data Structures questions David Keil 9/08 6

8. The classic Fibonacci function is implemented with what

programming feature?

ST 3
1. Fill in the appropriate term for each definition below.

(a) A true/false proposition that should be true at a certain
point in an algorithm’s execution, if the algorithm is
correct.
(b) An assertion that should be true before a certain
sequence of steps in an algorithm
(c) An assertion that is true at the start of each iteration of
a loop
(d) An assertion that should be true at the end of a certain
sequence of steps
(e) A verification method that can at best show an
algorithm’s incorrectness
(f) A verification method based on formal techniques
used in mathematics
(g) A mathematical technique used to prove a general
assertion by showing that it is true for one case and that,
if it is true for some case, then it is true for the next case
after that

Longer-answer questions
1. Write a paragraph or two discussing the problem of

searching and sorting arrays. Include considerations of time
complexity and use big-O notation to compare algorithms.

2. Write pseudocode for the sorting algorithm of your choice
and discuss its complexity.

3. Describe the best, expected, and worst case complexities of
various algorithms, using big-O notation. Why is it useful to
express an algorithm’s running time as a function rather
than as a number?

4. Write pseudocode or Java code for a method that will
efficiently merge its two parameters, sorted arrays A and B
of sizes da and db, into the third parameter array, C, leaving
C sorted in ascending order. Discuss its complexity.

5. Write pseudocode to insert a value into a linked list of
integers that is in ascending order. What is the complexity
of the algorithm?

6. Compare the expected and worst-case running times for
searching unsorted arrays, sorted arrays, and linked lists.

7. Write pseudocode or Java code for a method that accepts an
integer and a sorted integer array as parameters, and that
inserts the single integer into the array, in ascending order.
What is its complexity?

8. Write an algorithm that will merge two sorted arrays, A and
B, of sizes da and db, into the third sorted array, C. Discuss
its complexity and argue for its correctness.

9. Write pseudocode for a search of a linked list for a given
value. State the pre- and postconditions of the algorithm and
write comments that argue persuasively for the correctness
of the algorithm. What is the complexity of your algorithm?

10. Write pseudocode or Java code for a method that accepts an
array, sorted ascending, as a parameter and removes all
duplicates, packing the array to fill spaces left by deletions.

11. Write pseudocode or Java code for a method that accepts an
array, not necessarily sorted, as a parameter, and removes all
duplicates, packing the array to fill spaces left by deletions.

12. Write an algorithm in pseudocode to determine whether a
singly-linked list of integers stores any duplicate values. In
Big-O notation, what is the worst-case running time?

13. Write a method that accepts an array of integers as a
parameter and returns the length of the longest series of
consecutive array elements that have the value 2. What is its
complexity?

14. Write a method that accepts an array of integers as a
parameter and returns the length of the longest series of
consecutive elements that have the same value. What is its
complexity?

15. Write a method that takes two C-style strings, s1 and s2, as
parameters and returns the location of the first match
between s2 and a substring of s1; that is, for find(“concat”,
“cat”), the return value would be 3. What is the complexity
of the method?

16. Modify the partition step in Quicksort to select as a pivot
the median (middle) value of five elements of the array
taken at random. Compare sort times for some large set of
test data, such as the words in the Web files used in your
project. Discuss the results.

17. Design or code an implementation of a linked list of floats.
Include necessary class declarations and method definitions
to implement insertion of one value, and display of all
values.

18. Write pseudocode for a search of a linked list for a given
value. State the pre- and postconditions of the algorithm and
write comments that argue persuasively for the correctness
of the algorithm.

19. Write a method that accepts as parameters a sorted array of
integers, its occupancy (current size), and a value to be
inserted. The method should insert the value at its
appropriate location. Write preconditions, postconditions,
and loop invariants to argue that the method is correct.

20. Write pseudocode or Java code for an algorithm that finds
the sum of the elements of an array of integers, given the
array and a value denoting its size. Use preconditions,
postconditions, and loop invariants to argue that it is correct.
Express its time complexity in big-O notation.

21. Write an algorithm in pseudocode, or code it in Java, to
display all the integers from 100 down to 1. Use a loop
invariant to show that the algorithm is correct.

22. Write an algorithm in pseudocode, or code it in Java, to
input a series of real numbers and find the smallest value
among them. Use a loop invariant to show that the algorithm
is correct.

23. Using pseudocode, C, or Java, write an algorithm that
accepts an array of integers and returns the value os the
largest and smallest elements. Show its correctness using
preconditions, postconditions, and loop invariants

24. Write an algorithm that tells whether a linked list of integers
contains two or more nodes that store a given value. Argue
for its correctness and discuss its complexity

Data Structures questions David Keil 9/08 7

25. Write an algorithm that takes an array of integers as a

parameter and returns the sum of these integers. Argue for
correctness and discuss complexity

26. Write a recursive algorithm (in C, Java, or pseudocode) that
accepts a number, n, and finds the sum of all the numbers
from 1 to n.

Data Structures questions David Keil 9/08 8

Answers to study questions on Topic 1

1. Collections and arrays
Multiple-choice, T/F
1. a. A class is used to declare an abstract data type in Java.
2. b. Each customer could be represented by a structure

consisting of the name, street, address, town, etc. The
array would make possible a search for the structure with
a given name member.

3. c. A collection is a set of items of a single type.
4. e. An abstract data type is characterized by its data

properties and a set of behaviors or operations on the
data.

5. b. A set of data items of the same class is a collection.

Short-answer
1. The creation of new data types
2. data abstraction
3. collection
4. Define a class that has an array of structures as a

member.

2. Design: divide and conquer
1. d. Recursion involves a simple-to-solve base case and a

recursive case in which the algorithm repeats for a
simpler problem.

2. b. Recursive solutions split a problem into two parts, a
simple one and one that is at least simpler than the
original problem.

3. b. If the base case does not apply, the recursive case does
and the method calls itself.

4. f. When the recursive case applies, a method calls itself.
5. f. A recurrence defines a method algorithmically by

invoking itself.
6. d. In a recurrence, a method is defined with a branch, in

two alternative ways, one of which loops.
7. c. A recursive method, unlike a while loop, uses stack

space. (Answers (a), (b), and (d) refer to disadvantages
of iteration compared with recursion.)

8. b. Testing cannot establish a guarantee of correct results.
Such a guarantee is highly desirable but difficult to
obtain.

3. Algorithm verification
1. c. The assertion will trigger an error message if a

condition is false that the programmer believes always
to be true during program execution.

2. c. The loop invariant’s validity at the start of the loop
body helps establish that a sequence of statements
containing the loop accomplish their task.

3. f. Mathematical proof of correctness is difficult and is
usually practical only for certain critical parts of a
software project.

4. a. The base step is concerned with showing one fact
about one item of data.

5. c. If a value steadily progresses toward a certain final
value, i.e., converges on it, we know that the loop that
contains it terminates.

6. d. Partial correctness means provably correct output
for all valid input. Good test results are encouraging
but cannot contribute to proof of correctness.

7. a. An inductive proof has a base step, which
establishes a fact for a base value n, and an inductive
step, which establishes that P(n) leads to P(n + 1), for
a certain proposition P and all values n.

8. d. A postcondition should assert that a state of affairs
exists indicating that an algorithm was successful.

4. Searching and sorting
Multiple-choice, T/F
1. f. A binary search cannot be used on an unsorted array.
2. f. Those that are out of order are normally swapped.
3. t. Those that are our of order are normally swapped.
4. c. The values of the reference parameters are swapped

and returned to the calling method.
5. a. The algorithm proceeds by placing successive

elements in the unsorted part of the array into their
ordered location in the sorted part.

6. b. Thus with Bubble, high-valued elements trickle
toward the end of the array.

7. b. The pivot value is used in the partition step to arrange
all values less than the pivot to its left and all values
greater to its right.

8. c. The merge repeatedly takes the lower of two values at
the front of sorted input arrays and appends it to an
output array.

Short-answer
1. termination
2. a loop invariant
3. precondition, postcondition
4. correctness
5. (a) termination and (b) partial correctness, i.e., correct

output for each valid input
6. Recursion. Twice.
7. Recursion
8. (a) assertion

(b) precondition
(c) Loop invariant
(d) postcondition
(e) testing
(f) proof
(g) induction

Data Structures questions David Keil 9/08 9

5. Algorithm complexity
Multiple-choice, T/F
1. f . On the order of one pass may be necessary to put each

element in place.
2. b. The linear search cannot be beaten for unordered

arrays. Sorting, then searching with the binary search
will take longer than scanning, by any sort algorithm.

3. a. A search is necessary to locate a value. The binary
search is available only for sorted arrays.

4. b. The binary search efficiently searches an array sorted
ascending or descending.

5. d. Algorithm analysis most often estimates the time of
execution as a function of size of input.

6. d. The case where time is greatest is the worst (slowest)
solution.

7. a. Each step inspects the middle element of a sub-array
and eliminates either all elements to its left or all those to
its right.

8. c. If n is 10, the number of steps is about 4; if 1000,
about 10; if 1,000,000, about 20.

9. f. A binary search cannot be used on an unsorted array.
10. t. The best case is one access, the worst is the whole

array. The average will be half the array.
11. f. Those that are out of order are normally swapped.
12. t. Those that are our of order are normally swapped.
13. c. Since 21 = 2, 22 = 4, 26 = 64, 210 = 1024, the closest

value is 6. A logarithm is an exponent.
14. d. Since 21 = 2, 22 = 4, 25 = 32, 210 = 1024, the closest

value is 10. A logarithm is an exponent.
15. t. The linear search must inspect every array element; the

binary search homes in on its target more quickly.
16. c. The values of the reference parameters are swapped

and returned to the calling method.
17. a. The algorithm proceeds by placing successive

elements in the unsorted part of the array into their
ordered location in the sorted part.

18. b. Thus high-valued elements trickle toward the end of
the array.

19. e. Quicksort’s running time is
O(n log n)

20. b. The pivot value is used in the partition step to arrange
all values less than the pivot to its left and all values
greater to its right.

21. c. Big-O is a set of functions, all within a constant factor
of each other, so an approximation is involved.

22. c. The merge repeatedly takes the lower of two values at
the front of sorted input arrays and appends it to an
output array.

23. b. Since 23 = 8, the value closest to the base-2 log of 10
is 3.

24. b. Since 210 = 1024, the value closest to the base-2 log of
1000 is 10.

25. c. Each of n nodes may have to be visited.
26. c. Big-O notation estimates the highest (worst-case)

running time

27. d. Theta notation a tight bound on running time
28. b. Big-Omega notation estimates best-case running time
29. f. O(log n) problems have logn-time solutions, which are

quite efficient.
30. t. O(2n) problems take worst-case time that is

exponential in the size of the data set.
31. t. An algorithm with log n running time is quite efficient.
32. f. An algorithm with O(2n) running time can be

extremely time consuming.
33. c. Asymptotic analysis relates to the rate of growth of

functions.
34. f. Algorithm analysis provides us with tools to help

determine which data structure to use for particular
applications.

Short-answer
1. Binary search is O(logn)
2. Bubble sort is O(n2)
3. Selection sort is O(n2)
4. Quicksort is O(nlogn)
5. Hanoi is O(2n)
6. a) O(1)

b) O(n)
c) O(n)

7. a) 100
b) 50.5
c) 1

8. The running time of linked-list prepend is O(1)
9. The running time of linked-list insert is O(1).
10. The running time of the operation appending a node to a

linked-list is O(n).
11. The running time of the linked-list operation of inserting

a node at the end, given the address of the first node is
O(n).

12. The linked-list operation of deleting all nodes is O(n).
13. Linear search applies to linked lists regardless of

ordering: O(n)
14. (a) T (b) F (c) T (d) F (e) T
15. bubble sort, selection sort, insertion sort are all O(n2)
16. Quicksort
17. (a) O(log n), O(log n)

(b) O(n2), O(n2)
(c) O(n2), O(n lg n)
(d) O(2n), O(2n)

18. No -- still O(n2) because nested loop of up to n iterations
are still used

19. (a) slower
(b) half as fast
(c) O(n2) -- takes precisely n2 steps. Wastes much time.

20. (a) O(n) (b) O(n) (c) O(n2)
(d) O(lg n) (e) O(n lg n)

21. (a) O(n2) (b) O(n)
(c) O(n2) (d) O(lg n)

22. O(n log n)
23. (Selection, insertion, bubble) vs. Quick

Data Structures questions David Keil 9/08 10

Longer-answer questions
1. Design or code an implementation of a linked list of

floats. Include necessary class declarations and method
definitions to implement insertion of one value, and
display of all values.

2. Write a series of statements that divide input value a by
value b without the division operator and, by use of
preconditions, postconditions, and loop invariants, prove
or argue persuasively that your code will not crash the
program with a divide-by-zero error.

3. Through preconditions, postconditions, loop invariants,
or other techniques, argue that the selection-sort
algorithm below puts the array A into ascending order.
Give better names to m and s.
void selection(int A[],int s)x
{
 for (int i=0; i < s-1; ++i)
 {
 int m = i,j;
 for (j=i+1; j < s; ++j)
 if (A[j] < A[m])
 m = j;
 swap(A[i],A[m]);
 }
}

4. Write an algorithm in pseudocode, or code it in Java, to
input a series of real numbers and find the smallest value
among them. Use a loop invariant to show that the
algorithm is correct.

5. Write a recursive algorithm (in C, Java, or pseudocode)
that accepts a number, n, and finds the sum of all the
numbers from 1 to n.

6. By use of preconditions, postconditions, and loop
invariants, prove or argue persuasively that the code
below will terminate rather than hanging the computer.
int i = 1;
while (i < 100)
{
 cout << i;
 if (i % 2 == 0)
 i *= 2;
 else
 i++;
}

7. By use of preconditions, postconditions, and loop
invariants, prove or argue persuasively that the
pseudocode below will correctly count the number of
spaces in a string, s.
count-spaces(s)
n ← 0
I ← 0
while i < length(s) do
 if s[I] = ‘ ‘
 n ← n + 1
 i ← i + 1
}

8. Write a method that accepts as parameters a sorted array
of integers, its occupancy (current size), and a value to
be inserted. The method should insert the value at its
appropriate location. Write preconditions,
postconditions, and loop invariants to argue that the
method is correct.

9. Write pseudocode for a search of a linked list for a given
value. State the pre- and postconditions of the algorithm
and write comments that argue persuasively for the
correctness of the algorithm.

10. Write pseudocode or Java code for an algorithm that
finds the sum of the elements of an array of integers,
given the array and a value denoting its size. Use
preconditions, postconditions, and loop invariants to
argue that it is correct. Express its time complexity in
big-O notation.

11. Write an algorithm in pseudocode, or code it in Java, to
display all the integers from 100 down to 1. Use a loop
invariant to show that the algorithm is correct.

12. Using pseudocode, C, or Java, write an algorithm that
accepts an array of integers and returns the value os the
largest and smallest elements. Show its correctness using
preconditions, postconditions, and loop invariants.

13. Write an algorithm that tells whether a linked list of
integers contains two or more nodes that store a given
value. Argue for its correctness and discuss its
complexity.

14. Write an algorithm that takes an array of integers as a
parameter and returns the sum of these integers. Argue
for correctness and discuss complexity.

Data Structures questions David Keil 9/08 11

Study questions on topic 2: Linked structures

1. Dynamic allocation
1. (T-F) It is possible to declare a class of which one attribute

is a reference to another instance of the class.
2. (T-F) Dynamic variables are referenced not by identifiers

but by references.
3. A reference variable stores (a) an address; (b) a set;

(c) input data; (d) a function; (e) nothing
4. To allocate memory for a dynamic variable, we use (a) a

loop; (b) a declaration; (c) new; (d) free or delete; (e) none
of these

5. A dynamic variable is allocated where? (a) disk; (b) stack;
(c) global variable memory; (d) heap; (e) embedded in
machine code

6. (a) ; (b) ; (c) ; (d) ; (e) none of these
7. (a) ; (b) ; (c) ; (d) ; (e) none of these

2. Linked lists
1. (T-F) A linked list is of a length specified in its

declaration.
2. (T-F) A linked-list node type is a simple type.
3. (T-F) The physical order (in memory) of the nodes of a

linked list is the same as the order in which nodes are
accessed.

4. The data type of a node of a linked list is (a) array;
(b) simple; (c) class; (d) collection; (e) reference

5. How many reference members, minimum, must a linked-
list node have? (a) 0; (b) 1; (c) 2; (d) 3; (e) 4

6. A linked-list node object must have how many
members? (a) 0; (b) 1; (c) 2; (d) 3; (e) more than 3

7. One member of a linked-list node must be a(n)
(a) character; (b) integer; (c) node; (d) reference;
(e) none of these

8. (a) ; (b) ; (c) ; (d) ; (e) none of these
9. (a) ; (b) ; (c) ; (d) ; (e) none of these

3. Traversal and search of lists
1. Deleting a node from a linked list normally involves

(a) changing the data value in the node; (b) changing the
value of the node's next reference; (c) changing the link in
another node so as not to point to the deleted node;
(d) changing the link in another node to point to the deleted
node

2. To access a certain node in a singly-linked list (a) takes one
step; (b) takes two steps; (c) requires that all its
predecessors be visited; (d) requires that all its successors
be visited

3. (T-F) Insertion of a new value into an ordered linked list
takes more steps than insertion into an ordered array.

4. To delete a node a singly linked list, using the best-known
algorithm, the address of which node must be known?
(a) none; (b) the first; (c) the predecessor of the node to
delete; (d) the node to delete; (e) the successor of the node
to delete

5. Search of a linked list of n nodes may require visiting up to
how many nodes? (a) 1; (b) 2; (c) n; (d) n2; (e) none of
these

4. Conclusion
1. An advantage of linked lists is (a) low access speed;

(b) optimal search speed; (c) zero overhead;
(d) expandability; (e) none of these

2. A disadvantage of linked lists is (a) high access time;
(b) zero expandability; (c) time consuming insertion and
deletion processes; (d) all of these; (e) none of these

3. (T-F) If we know the address of a node in a doubly linked
list, then to access its predecessor we must start at the first
node in the list.

4. (a) ; (b) ; (c) ; (d) ; (e) none of these
5. (a) ; (b) ; (c) ; (d) ; (e) none of these
6. (a) ; (b) ; (c) ; (d) ; (e) none of these

Data Structures questions David Keil 9/08 12

Answers to study questions on topic 2

1. Dynamic allocation
1. t. The link is a reference to the next node.
2. b. Passing an array identifier to a function means copying

the address, not each element of the array.
3. c. The dereferencing operator (*) converts a pointer to the

value it points to.
4. t. A dynamically allocated variable is anonymous and can be

reached only through a pointer to it.
5. d. Dynamic variables are allocated by the heap manager in

heap memory.

2. Linked lists
6. f. A linked list is of arbitrary length.
7. f. A node is of a class.
8. f. The physical order after an insertion may be different

from the physical order in memory.

9. c. A node is a structure or object containing a data value and
a link reference.

10. b. A singly-linked list node has one reference, to the node’s
successor.

3. Traversal and search of lists
1. c. The predecessor node’s link reference is changed to point

to the successor of the deleted node.
2. c. A list node is accessed starting at -the first list node.
3. f. List insertion typically takes fewer steps, especially if the

insertion point is known.
4. c. The predecessor’s link must be altered.

4. Conclusion
1. f. A doubly-linked-list node has a predecessor link.

Data Structures questions David Keil 9/08 13

Short-answer
1. Declare a data type for a linked-list node to store a float.
2. Write Java code or pseudocode to display all data values in a linked list whose first node is pointed to by reference variable p

and whose data value in each node is named data.
3. What are three operations appropriate to a linked list?
4. How might you append one linked list, L2, to another, L1?
5. How might you insert one linked list (L2) into another (L1) at some desired location whose predecessor node is stored in

reference pn?

Longer-answer questions
1. In one or two paragraphs, state the relationship among these concepts:

- Abstract data type
- C class or Java class
- Data structure
- Algorithm

2. Define a collection of library-book data records. Each book has a title, author, and catalog number. In Java, define appropriate
data types and define methods to search the collection for a particular catalog number. Discuss two ways to implement the
collection other than the one you chose; what are their advantages and disadvantages?

3. Design or code an implementation of a linked list of floats. Include necessary class declarations and method definitions to
implement insertion of one value, in ascending numeric order, and display of all values.

4. Write declarations for abstract data types or classes needed to implement a collection of butterflies. A butterfly has a wing
span, a color, and a name. Include some appropriate method declarations for operations on the butterflies and the collection.

5. Write a method that takes two parameters that are references to list nodes, and that links the two nodes by making the second
node the successor of the first.

Short-answer answers
1. struct Nodes

{
 float data; nodes* next;
};

2. while (p_node != NULL)
{
 printf(“%d”,p_node->data);
 p_node = p_node->next;
}

3. Some operations appropriate to a linked list are prepend node, append node, insert node, delete node, search list, delete all
nodes.

4. Step to end of L1, assign the address of the first node of L2 as the next of the last node of L1.
5. Save pt as a temporary variable with value pn->next; assign address of L2’s first node as pt->next; assign pt as next of last

node of L2.

Data Structures questions David Keil 9/08 14

Study questions on topic 3: Stacks and queues

1. Stack operations
1. (T-F) A stack is a last-in, first out structure.
2. To add to a stack, we carry out a(n) ______ operation.

(a) dequeue; (b) enqueue; (c) pop; (d) push; (e) traversal
3. The push operation is carried out on (a) lists; (b) trees;

(c) arrays; (d) stacks, (e) queues
4. It is impossible to push data onto a(n) _______ stack.

(a) full; (b) empty; (c) initialized; (d) array-implemented;
(e) list-implemented

5. Access to the contents of a stack is (a) O(logn);
(b) restricted; (c) random; (d) O(n2); (e) none of these

6. _________ on a stack is accessible. (a) the top item; (b) the
root; (c) the bottom item; (d) the highest-valued item (e) the
lowest-valued item.

7. The stack is a _____-in, first-out structure. (a) lowest;
(b) highest; (c) first; (d) last; (e) none of these

8. To look at a value in a stack requires (a) random access;
(b) dequeueing; (c) enqueueing; (d) push; (e) pop

9. (T-F) The concept of a stack specifies data attributes but
not operations.

10. (T-F) A stack is a kind of collection.
11. To delete from a stack, we carry out a(n) ______ operation.

(a) dequeue; (b) enqueue; (c) pop; (d) push; (e) traversal
12. The push operation triggers an error message on (a) full

stack; (b) full queue; (c) empty stack; (d) empty queue;
(e) null reference

13. The pop operation is an error in case of (a) full stack;
(b) full queue; (c) empty stack; (d) empty queue; (e) null
reference

14. (a) ; (b) ; (c) ; (d) ; (e) none of these
15. (a) ; (b) ; (c) ; (d) ; (e) none of these

2. Stack examples
1. An appropriate data structure for a problem involving the

checking of matching parentheses would be a (a) list;
(b) array; (c) stack; (d) queue; (e) tree

2. A postfix way of writing arithmetic expressions is
(a) recursive; (b) Big-O notation; (c) quadratic; (d) reverse
Polish notation; (e) none of these

3. To evaluate an expression in reverse Polish notation, we
use ______ for each operator encountered. (a) one push;
(b) two pushes; (c) one pop; (d) two pops; (e) none of these

4. To evaluate an expression in reverse Polish notation, we
use ______ for each numeric value encountered. (a) one
push; (b) two pushes; (c) one pop; (d) two pops; (e) none of
these

5. (T-F) A method call at runtime triggers a push operation.
6. (T-F) A method call at runtime triggers a pop operation.

3. Stack implementations
1. (T-F) Stacks and queues may have different

implementations in the Java language.
2. The ______ implementation of the stack enables one-

step pop and push (a) class; (b) tree; (c) array; (d) linked-
list; (e) none of these

3. Stack can be full in ___ implementation (a) class;
(b) tree; (c) array; (d) linked-list; (e) none of these

4. (a) ; (b) ; (c) ; (d) ; (e) none of these
5. (a) ; (b) ; (c) ; (d) ; (e) none of these
6. (a) ; (b) ; (c) ; (d) ; (e) none of these

4. Queue operations
Multiple-choice, T/F
1. A queue is a specialized kind of (a) simple type; (b) array;

(c) collection; (d) tree; (e) stack
2. To remove data from a queue, we carry out the ______

operation. (a) dequeue; (b) enqueue; (c) pop; (d) push;
(e) traversal

3. The first-in, first-out structure is the (a) list; (b) array;
(c) queue; (d) stack; (e) tree

4. (T-F) The queue is an abstract data type.
5. The dequeue operation triggers an error message on (a) full

stack; (b) full queue; (c) empty stack; (d) empty queue;
(e) null reference

6. The enqueue operation triggers an error message on (a) full
stack; (b) full queue; (c) empty stack; (d) empty queue;
(e) null reference

5. Applications for queues
1. An appropriate data structure for a problem involving a set

of customers waiting in line would be a (a) list; (b) array;
(c) stack; (d) queue; (e) tree

6. Queue implementations
Multiple-choice, T/F
1. (T-F) A queue may be implemented as an array.
2. In the list implementation of a queue, a new item would be

added to the (a) front; (b) back; (c) second node; (d) middle
node; (e) none of these

Data Structures questions David Keil 9/08 15

Answers to study questions on topic 3
Multiple-choice, T/F
[To be allocated among multiple-choice questions]
1. t. A stack is a last-in, first-out structure.
2. c. A queue contains a collection of values, accessible in a

particular order.
3. d. The push operation places a new value on top of the

stack.
4. a. The dequeue operation removes the first item from the

queue.
5. d. The stack operation push adds an item to the top of the

stack.
6. a. In an array implementation, a stack may be full to

capacity.
7. t. In a queue array implementation, the front and back

items are named as subscripts.
8. b. The top of the stack is where items are added or

removed.
9. a. Access is instantaneous, but only the top item may be

retrieved and an item may only be stored in the top
position.

10. c. The oldest item in the queue is the next retrieved.
11. d. A stack is last-in, first-out.
12. e. The pop operation retrieves the top item.
13. t. A stack or queue may be implemented by an array or a

linked list.
14. t. The queue is defined by a collection (array or list) and

a set of two operations: dequeue and enqueue.
15. f. The concept involves storage and retrieval operations.
16. t. A stack is an ordered collection that is accessible from

only one end.
17. d. A queue is a first-in, first-out structure.
18. c. A left parenthesis could be stored on the stack, then

popped when its mate is found.
19. b. It takes n steps to insert an item into an n-item queue

implemented as a linked list.
20. c. Pop deletes from the front of a stack; push inserts at

the front.
21. d. Reverse Polish notation is postfix in that the operator

follows the two operands.
22. d. In RPN, the evaluation operation must pop two

numeric values off the stack when an operator is
encountered.

23. a. In RPN, a numeric value found in the input stream
must be pushed on to the stack.

24. t. A method call pushes an activation record onto the
runtime stack.

25. f. A method call pushes an activation record onto the
runtime stack.

26. d. The dequeue operation cannot run on empty queue.
27. b. The enqueue operation cannot run on full queue.
28. a. No value can be pushed onto a full stack.
29. c. The pop operation cannot execute on an empty stack.

Short-answer
1. queue
2. An array for stack contents, int for top subscript;

methods pop, push
3. An array for queue contents, int for size of queue;

methods enqueue, dequeue
4. (a) read 5, push 5, read 3, push 3, read +, pop 3 and 5,

add 5 + 3, push 8, read 2, push 2, read *, pop 2, pop 8,
calculate 8 * 2, push 16.
(b) read 6, read *, pop 6, get error popping empty stack,
terminate
(c) read 2, push 2, read 1, push 1, read 3, push 3, read −,
pop 3, pop 1, compute 1−3, push −2, pop −2 to display
answer, display error on stack not empty at end of input
stream
(d) read 1, push 1, read 4, push 4, read +, pop 4 and 1,
add 1 + 4, push 5, read 5, push 5, read −, pop 5, pop 5,
calculate 5 − 5, push 0.
(e) read 6, push 6, read 3, push 3, read /, pop 3, pop 6,
compute 6 / 3, push 2, read 2, push 2, read +, pop 2, pop
2, calculate 2 + 2, push 4

5. (a) valid
(b) invalid (− causes pop of empty stack)
(c) invalid (not enough operators, leaves 1 on stack)

6. (a) queue
(b) 25

7. (a) O(1)
(b) O(1)
(c) O(1)
(d) O(size)

8. (a) O(1)
(b) O(1)
(c) O(1)
(d) O(1)

9. Running time for insertion is improved from O(n) to
O(1) if link to last node is maintained.

Data Structures questions David Keil 9/08 16

Longer-answer questions
1. Write an implementation of a queue of sales order numbers. The user should have the options of entering an order or removing

it from the queue for order fulfillment.
2. Write pseudocode or Java code to implement the main operations on a queue. Discuss their time complexity.
3. Explain what a postfix expression is, with examples, and what data structure is used to work with it.
4. Write program code or pseudocode to implement the operations that store data in a stack and retrieve data from a stack.

Discuss time complexity.
5. Assuming a linked-list implementation of a queue, write methods that make use of the list operations to implement the queue

operations.
6. Write a program that reads a Java program and outputs a file with all method definitions removed. To accomplish this, you

must create a stack

Short-answer
1. Which data structure would be most appropriate to implement a simulation that determines expected time for customers to wait

for a teller to serve them in a bank?
2. What data members and what methods are needed to implement a stack using an array?
3. What data members and what methods are needed to implement a queue using an array?
4. Evaluate the following postfix expressions, showing operations on an appropriate data structure and signalling errors if

appropriate:
(a) 5 3 + 2 *
(b) 6 * 4 +
(c) 2 1 3 −
(d) 1 4 + 5 −
(e) 6 3 / 2 +

5. Which of the following are valid postfix expressions?
(a) 3 1 − 2 +
(b) − 1 2 + 3
(c) 1 4 2 / 3 +

6. Consider that your task is to build a program to simulate the arrival of bank customers at a teller line. Up to 1000 customers
may appear in a day, there may be up to four tellers available, and up to 25 customers could possibly line up for service at one
time, in the opinion of the client.
(a) What data structure would you use to represent the customers lined up?
(b) If it were implemented as an array, how many elements would the array have?

7. In Big-O notation, what are the running times of the following operations on stacks and queues in the implementations that
involve one array and one integer, size?
(a) pop
(b) push
(c) enqueue
(d) dequeue

8. In Big-O notation, what are the running times for the operations listed in the previous problem in implementations based on
linked lists?

9. In the linked-list implementation of a queue, what improvement in running time is made possible by maintaining a reference to
the tail of the queue?

10. What is the result?
push 3
push 0
push 1
pop y
display y

11.What is the result?
push 1
pop x
pop y
display y

Data Structures questions David Keil 9/08 17

12. What is the result?

for i ← 1 to 5
 push i
for i ← 1 to 4
 pop x
pop y
display y

Data Structures questions David Keil 9/08 18

Study questions on topic 4: Heaps and priority queues

1. The priority-queue problem
1.Each item in priority queue has a value denoting its

(a) address; (b) relative priority; (c) search key;
(d) numeric weight; (e) none of these

2.The priority queue lends itself to a straightforward
____ algorithm (a) key-search; (b) traversal;
(c) sorting; (d) deletion; (e) none of these

3.(a) ; (b) ; (c) ; (d) ; (e) none of these

2. Simple array solution
1. In the simple array solution to the priority-queue

problem, ____ is/are inefficient (a) Extract; (b) Insert;
(c) either Insert or Extract; (d) both Insert and Extract;
(e) none of these

2. (a) ; (b) ; (c) ; (d) ; (e) none of these

3. Binary trees and heaps
1.To implement a priority queue, it is most time-efficient to use

a (a) simple vector; (b) linked list; (c) heap; (d) binary
search tree; (e) hash table

2.The figure below is a (a) linked list; (b) minimum heap;
(c) binary search tree; (d) hash table; (e) maximum heap

3.The common implementation of a heap is (a) array; (b) linked

list; (c) doubly-linked structure; (d) multi-linked structure;
(e) none of these

4.The root of a heap implemented as array A is (a) the first
element of A; (b) the last element; (c) a reference; (d) the
node pointed to by a certain reference; (e) inaccessible

5.(T-F) In a maximum heap, each node’s left child stores a
value that is less than that of the parent.

6.(T-F) In a maximum heap, each node’s right child stores a
value that is greater than that of the parent.

7.The depth of a heap of size n is close to (a) 1; (b) log2n;
(c) the square root of n; (d) n / 2; (e) n2

8.If a heap node’s subscript is 4, then the subscript of its left
child is (a) 1; (b) 2; (c) 3; (d) 4; (e) 8

9.A heap is (a) any array; (b) any tree; (c) a complete binary
tree; (d) a binary tree in which no node has exactly one
child; (e) none of these

10.If a heap node’s subscript is 6, and it is a left child, then
the subscript of its parent is (a) 1; (b) 2; (c) 3; (d) 4;
(e) 12

11.(T-F) A heap is implemented by a binary search tree with
nodes linked by references.

4. Heap operations
1. The running time of the Heap-insert operation is

(a) O(1); (b) O(log n); (c) O(n); (d) O(n log n); (e) O(n2)
2. The running time of the algorithm to delete the minimum

value from a heap is (a) O(1); (b) O(log n); (c) O(n);
(d) O(n log n); (e) O(n2)

3. The running time of the algorithm to restore the heap
property in a tree, given a node whose two subtrees are
both heaps, is (a) O(1); (b) O(logn); (c) O(n);
(d) O(nlogn); (e) O(n2)

4. (T-F) The heap data structure lets us search for an
element with a given value in time O(log n)

5. To find an element of a given value in a heap would take
time O(___) (a) 1; (b) log n; (c) n; (d) n log n; (e) n2

6. The common implementation of a heap is (a) array;
(b) linked list; (c) doubly-linked structure; (d) multi-linked
structure; (e) none of these

7. To sort an array of size n using a heap will take how
many steps, on average? (a) 1; (b) log2n; (c) n; (d) n log
n; (e) n2

Data Structures questions David Keil 9/08 19

Short-answer
1. What is the best-known application for heaps?
2. What is the approximate running time of this algorithm,

Build-Heap, which operates on array A?
Heap-size[A] ← length[A]
For i ← ⎣length[A] ÷ 2⎦ down to 1
 Heapify(A, i)

3. Draw a minimum-heap that could be built from these
values:
{ 5, 3, 2, 6, 4 }

4. In a maximum heap, what is the relationship between
values stored in a parent and its child?

5. What is the name of the operation that restores the heap
property to a tree in which both subtrees of a node have the
heap property?

6. How many nodes must be looked at to find the second-
lowest value stored in a minimum heap?

7. How many nodes must be looked at to find the highest
value stored in a maximum heap of size n?

8. How many steps does it take to find the lowest value in a
maximum heap of size n?

9. Name a kind of binary tree in which all leaves are at most
one level apart.

10. What is a binary tree in which the bottom-row nodes are
filled at the left?

11. Describe the bottom row of a complete binary tree.
12. Name a data structure appropriate for implementing a

priority queue in which items may be inserted quickly with
arbitrary values and the lowest or highest valued item may
be retrieved quickly.

13. Draw a complete binary tree containing the values 4, 2, 5,
9, 8, 6, in that order.

14. Draw a minimum heap containing the values 8, 4, 2, 9, 5, 6
15. What is the heap property for minimum heaps?
16. What is the heap property for maximum heaps?
17. Consider this array:

int A[10] = {7,9,3,5,2,4,6,8,1,10};
(a) Draw the corresponding complete binary tree;
(b) Is it a heap? ______

13. Suppose the values 9,3,5,2,4,6,8,10 were in a priority queue
of print jobs, with highest priority corresponding to lowest
number, i.e., 2 is the highest-priority job. Then if you insert
a job with priority 3 and then extract two jobs from the
priority queue, what was the priority of the second job you
extracted?

18. Consider the tree below.

(a) Write the corresponding array initialization.
(b) Is the tree a heap? If not, redraw it as a heap.

19. Draw the trees that correspond to the heap shown below
after inserting (a) 6; and (b) 6, followed by 3

20. Draw the tree that corresponds to the heap shown in the

figure under the previous problem, after executing the
Extract-min operation.

21. In a sentence or two, and using Big-O notation, explain
what is the running time of Heapsort and why.

22. In Big-O notation, what is the complexity of the operation
of extracting all values in a priority queue of size n,
implemented as
(a) an unordered arrray;
(b) a heap

23. What is the depth of a complete binary tree with fifteen
nodes?

24. How many nodes are there in a complete binary tree of
depth 7?

Longer-answer questions
1. Describe in detail the steps in building a heap from an

unordered array and using the heap to produce a sorted
array. Discuss the complexity.

2. Implement a minimum-heap data structure in Java, using a
class and methods to support insertion and retrieval of
minimum value.

3. Write Java code, or pseudocode, for Heapify. Include
preconditions and postconditions.

4. Explain what the running time for heap insertion and
Extract-min are, and why.

5. What are two ways to implement a priority queue?
6. Describe the Heapify operation, its preconditions and

postconditions, and what it is used for.
7. Evaluate the healp data structure as a possible way to

implement a database that will be frequently searched.
8. Write a simple sorting algorithm that uses a heap for

internal storage.

Data Structures questions David Keil 9/08 20

Answers to study questions on topic 4

1. The priority-queue problem

2. Simple array solution

3. Binary trees and heaps
1.c. A heap data structure serves well for a priority queue

because its maximum or minimum element is always at the
root.

2.b. The figure is a heap because the minimum value is at the
root. It violates the binary search tree property and is linked
differently from a linked list.

3.a. The binary tree for a heap is stored in an array. Subscripts
of parent and child nodes are calculated.

4.a. The root is A[0] in a heap implemented in Java with an
array A.

5.t. Any node below stores a value lower than a node above.
6.f. Any node below stores a value lower, not greater, than a

node above such as the parent.
7.b. A complete binary tree with n vertices has a depth of logn.
8.e. The left child of a node in a complete binary tree

implemented as an array will have a subscript twice as large
as its parent’s.

9.c. The standard heap implementation is an array storing a
complete binary tree.

10.c. The parent of a node that is its left child will have a
subscript half as large as that of the child.

11.f. A heap is normally implemented as an array in the
structure of a complete binary tree; a binary search tree has
a very different logical structure.

4. Heap operations
1. b. Inserting an item in a heap entails a step to put the

item rightmost in the bottom row of the tree, then filter it
up the tree by exchanging it a number of times less than
or equal to the depth of the tree, logn.

2. b. After determining the minimum value in one step, it is
necessary to remove it an restore the heap property, an
operation taking up to as many steps as the depth of the
tree, logn.

3. b. Heapify takes up to as many steps as the depth of the
tree.

4. f. To search for an arbitrary value in a heap, it is
necessary to extract the minimum value up to n times.
Extracting the minimum and restoring the heap property
would take up to log n steps. The search of a heap is
worse than a linear search of an array and leaves the
heap empty.

5. d. See explanation for previous problem’s answer.
6. d. Roughly each array element must be inserted in the

heap, which takes roughly log n steps for each element.

Data Structures questions David Keil 9/08 21

Short-answer
1. Heaps are chiefly an implementation of priority queues.
2. O(n log n). Building a heap from an unsorted array requires

on the order of n heapifying steps, each of which is
O(logn).

3.

4. The value stored in the parent will be greater than that

stored in the child.
5. Heapify.
6. Two nodes must be inspected: the first and the second in

the priority queue.
7. One node must be looked at to find the highest value in a

maximum heap.
8. n nodes must be accessed to find the lowest value in a

maximum heap.
9. complete binary tree
10. complete binary tree
11. The bottom row of a complete binary tree is filled from the

left.
12. heap
13. A complete binary tree containing the values 4, 2, 5, 9, 8, 6:

14. Draw a minimum heap containing the values 8, 4, 2, 9, 5, 6

15. The heap property for minimum heaps is: Each non-leaf

node stores a value less than or equal to those stored in its
child nodes.

16. The heap property for maximum heaps is: Each non-leaf
node stores a value greater than or equal to those stored in
its child nodes.

17. (a)

(b) no

18. (a) int A[] = { 3, 5, 10, 2, 7 }
(b) No.

19. (a)

(b)

20.

21. Heap-sort is O(nlogn), because n items must be stored, in

log n time each; then n items must be retrieved in log n time
each.

22. (a) O(n2)
(b) O(n log n)

23. 3
24. 255

Data Structures questions David Keil 9/08 22

Study questions on topic 5: Trees

1. General trees
1. In a general tree, each node may have a (a) root; (b) right

sibling; (c) leaf; (d) subnode; (e) none of these
2. To model a hierarchy, it is most convenient to use a(n)

(a) simple type; (b) array; (c) linked list; (d) binary search
tree; (e) general tree

3. (T-F) In a general tree, it is mandatory for each node to
have a link to its parent.

4. To model an arithmetic expression, it is most convenient to
use a(n) (a) simple type; (b) array; (c) linked list; (d) binary
search tree; (e) binary tree

5. (T-F) A tree is a connected, cyclic graph.
6. In an expression tree, an operator is always (a) a leaf;

(b) a child; (c) the root; (d) a parent; (e) a subtree
7. (T-F) Removing an edge from a tree produces a non-tree.
8. A node in a tree that is the child of no other node is called

the (a) leaf; (b) parent; (c) root; (d) ancestor; (e) none of
these

9. A leaf node is one without (a) data; (b) children;
(c) a parent; (d) references pointing to it; (e) none of these

10. In an expression tree, the root of a subtree stores (a) an
expression; (b) a value; (c) an operator; (d) a position;
(e) none of these

11. The maximum path length from the root to a leaf is a tree’s
(a) degree; (b) connectivity number; (c) depth; (d) edge
count; (e) vertex count

12. The main implementation of a general tree shown in this
course used (a) parallelism; (b) arrays; (c) nodes with one
reference each; (d) nodes with two references each; (e) none
of these

13. Adding an edge to a tree without adding a vertex produces
(a) a cycle; (b) a deeper tree; (c) a non-tree; (d) answers a
and c; (e) none of these

14. (T-F) All acyclic graphs are trees
15. (T-F) All trees are connected graphs
16. In a tree, any two vertices are connected by ____ distinct

path or paths. (a) no; (b) exactly one; (c) one or more;
(d) many; (e) exactly two

17. The connectivity number of a tree is (a) 0; (b) 1; (c) at least
1; (d) 2; (e) none of these

18. According to the course material, the result of applying Java
grammar rules to parse Java program code would be stored
most conveniently in (a) an array; (b) a linked list;
(c) a general tree; (d) a binary search tree; (e) a heap

19. The number of edges in a tree is ____ the number of
vertices. (a) the same as; (b) one greater than; (c) one less
than; (d) one or more greater than

20. A tree has no (a) edges; (b) vertices; (c) paths; (d) cycles;
(e) connectivity

21. (a) ; (b) ; (c) ; (d) ; (e) none of these

2. Binary search trees
1. (T-F) A binary tree is generally faster to search than a

linked list that has the same number of nodes.
2. The height of a binary tree is (a) the number of nodes it

contains; (b) the maximum path length between two leaf
nodes; (c) the number of leaf nodes; (d) the maximum
path length from the root to a leaf node; (e) infinite

3. A binary search tree node has up to two (a) root nodes;
(b) children; (c) paths to a given node; (d) parents

4. The root of a tree node's left subtree is (a) the root of the
tree; (b) the node's left child; (c) the node's right child;
(d) the node's left or right child; (e) the node itself

5. The root node of a binary search tree contains
(a) the lowest value in the tree; (b) a value not higher than
that stored in its left child; (c) a value not higher than that
stored in its right child; (d) the highest value stored in the
tree; (e) no value

6. A binary search tree is like a linked list in that it (a) is
nonlinear; (b) always has two references per node;
(c) uses references; (d) has no self-referential
members; (e) has leaves

7. A binary search tree node is unlike the node of a singly
linked list in that it (a) is linear; (b) has two references
per node; (c) uses references; (d) has self-referential
members; (e) a BST node is not unlike an LL node at all

8. The complexity of a search of a balanced binary search
tree of n nodes is O(__) (a) logn; (b) n; (c) n log n; (d) n2

9. The maximum path length from the root to a leaf is the
tree’s (a) degree; (b) connectivity number; (c) depth;
(d) edge count; (e) vertex count

10. To tell whether a certain value is in a binary search tree
takes, on average, how many steps? (a) O(1); (b) O(logn);
(c) O(n); (d) O(nlogn); (e) O(n2)

11. To tell whether a certain value is in a binary search tree
takes, worst case, how many steps? (a) O(1); (b) O(logn);
(c) O(n); (d) O(nlogn); (e) O(n2)

12. (T-F) The figure below is a binary search tree.

13. (T-F) The figure below is a binary search tree.

14. (T-F) The figure below is a binary search tree.

Data Structures questions David Keil 9/08 23

3. Tree traversal
1. Traversal of a binary search tree is normally (a) linear;

(b) impossible; (c) recursive; (d) risky; (e) circular
2. A binary search tree is traversed (a) depth first;

(b) breadth first; (c) in the order in which nodes were
inserted; (d) at random; (e) none of these

15. (T-F) The binary search tree shown below could be
generated by the insertion of values 3, 5, 2, 4, 1 in that
order.

16. (T-F) The binary search tree shown below could be

generated by the insertion of values 1, 4, 3, 7, 8 in that
order.

4. BST insert and delete
1. A new node is inserted into a binary search tree (a) at its

root; (b) as a leaf; (c) as a parent of some other node;
(d) in time proportional to the size of the tree; (e) none of
these

2. Which is not an operation that can be performed on
binary search trees? (a) insert item; (b) delete item;
(c) display all items; (d) search for an item; (e) determine
maximum possible size

3. (T-F) Insertion into or deletion from a binary search tree
takes an amount of time proportional to the size of the
tree.

4. (T-F) Deletion of a node from a binary search tree may
include moving data in one node to a distant node.

5. To delete a leaf node from a binary tree, (a) nullify the
reference to it in the node’s parent; (b) find the leftmost
node of the node’s right child; (c) link the node’s parent
to the node’s child; (d) link the root to the node; (e) make
the node the child of its own child

6. To delete the parent of a single node (only child) from a
binary search tree, (a) nullify the reference to it in the
node’s parent; (b) find the leftmost node of the node’s
right child; (c) link the node’s parent to the node’s child;
(d) link the root to the node; (e) make the node the child
of its own child

7. If node b in a binary search tree has a value smaller than
node a, and b is inserted after node a, then b is located
where in relation to node a? (a) above and left of;
(b) below and left of; (c) below and right of; (d) above
and right of; (e) none of these

5. BST implementation
1. A BST node implemented in Java contains ____

reference(s) (a) 0; (b) 1; (c) 2; (d) 3; (e) more than 3

2. How many non-null references does a BST node have?
(a) 0; (b) 1; (c) 2; (d) 0 or 1; (e) 0, 1, or 2

3. (a) ; (b) ; (c) ; (d) ; (e) none of these
4. (a) ; (b) ; (c) ; (d) ; (e) none of these
5. (a) ; (b) ; (c) ; (d) ; (e) none of these

6. Performance issues
Multiple-choice, T/F
1. (T-F) The level of two leaf nodes in a balanced tree

differs at most by one.
2. A degenerate tree has (a) balanced branches; (b) no

nodes; (c) nodes with only 1 reference; (d) almost all
branches going uniformly left or right at all levels;
(e) none of these

3. Search time on a degenerate tree is (a) constant;
(b) logarithmic-time; (c) linear time; (d) quadratic time;
(e) none of these

Data Structures questions David Keil 9/08 24

Short-answer

ST1
1. Which data structure would you use to implement an outline

processor?
2. Write a structure-type definition for a general-tree node.
3. Name or describe the member data items required to define

a general-tree node.
4. In the logical structure of a general tree, one node may have

how many siblings?
5. Write the Java infix expression that corresponds to this tree:

6. Draw the expression tree that corresponds to the Java

expression a / b − c * d.

ST2
1. Draw the binary search tree, of characters, that would be

formed by inserting the following values in order: ‘S’, ‘E’,
‘L’, ‘I’, ‘T’, ‘B’, ‘M’

2. What is the average time complexity of the standard
algorithm to insert one new value into a binary search tree
of n nodes?

3. What is the rough expected running time of a standard
algorithm to build a binary search tree from a random series
of distinct values, and then to traverse the tree displaying
value in ascending order?

4. What is the binary-search-tree property?
5. What is the time complexity of inserting one new value into

a degenerate binary search tree of n nodes?
6. What is the time complexity of inserting one new value into

a balanced binary search tree of n nodes?
7. Sketch the binary search tree created by inserting values in

the following order: ‘K’, ‘M’, ‘A’, ‘D’, ‘H’, ‘B’, ‘R’, ‘Q’.
8. List a possible ordering of values that could produce this

BST when inserted one by one:

9. Draw the BST that would be formed by inserting, in order,

4, 2, 5, 9, 8, 6.
10. In big-O notation, for balanced binary search trees, what are

the complexities of
(a) node insertion?
(b) node deletion, for each of the three cases?
(c) tree sorting, from scratch?
(d) displaying contents of tree using inorder traversal?

11. Write the expression tree for “a + 2b − c + 4”.
12. Draw a binary tree with five nodes and three leaves.
13. A binary tree consists of eight nodes, of which four are

leaves. If new nodes are added in such a way that one leaf
node becomes a parent with two children, the tree will have
how many nodes, including how many leaves?

14. Using nodes with only two links each, draw a tree to
represent a family whose senior member (Ada) has three
children, Betty, Carl, Don, and Emily. Betty has one child,
Carl has none, Don has three, and Emily has two.

15. Write a class or structure-type declaration, listing data
members of the nodes for the family tree described in the
previous problem. A person’s name is sufficient to describe
the person.

16. Draw a binary search tree of characters for the values S, I,
T, M, E, L, B, inserted in that order.

17. What does this code do?
int weight(nodes* p)
{
 if (p == NULL)
 return 0;
 else
 return 1 + weight(p->left) +
 weight(p->right);
}

18. Name three ways to traverse a tree.

Longer-answer questions
1. What are the advantages and disadvantages of organizing a

local area network as a tree? As a ring?
2. Describe three tree-like structures we have encountered in

this course and briefly name their implementations.
3. What are some of the applications of general trees?
4. What are some advantages of binary search tree structures

over linked lists and arrays?
5. Describe in detail the data members of a general-tree

structure and give pseudocode for two or three operations;
or code in Java.

6. Write an algorithm to find the total number of nodes in a
general tree, given its root.

7. Write pseudocode or Java code for
(a) a BST search or
(b) traversal.
(c) deletion
(d) insertion
(e) emptying tree

8. Write pseudocode or Java code to delete a node from a
binary search tree, given a reference to it and given a
reference to the root of the tree.

9. Discuss the relative complexities of the storage, retrieval,
and search operations on (a) a stack; (b) a linked list sorted
in ascending order; (c) a binary search tree.

10. Compare and contrast the heap property and the BST
property and discuss implications for operations on these
structures.

11. Compare the complexities of various standard operations,
including searching, on arrays, linked lists, and trees, using
Big-O notation. Option: use pseudocode or code to illustrate
your points.

Data Structures questions David Keil 9/08 25

12. Write pseudocode or Java code for one of the following and

discuss its complexity:
(a) delete a node from a binary search tree, given a reference
to it and given a reference to the root of the tree;
(b) insert a value into a binary search tree whose root is
pointed to by p;
(c) display all values in a binary search tree in alphabetical
order by key.

13. Write a recursive method that accepts a reference to a BST
node as a parameter and returns 0 if the reference is null,
otherwise returns one plus the combined weights of the
node’s left and right subtrees. That is, your method should
return the number of nodes in a BST subtree whose root is
pointed to by the parameter. Prove the correctness and
discuss the complexity of the method.

14. Compare and contrast heaps and binary search trees.
15. Describe how a binary search tree of integers could be

implemented using an array.
16. What are some of the applications of trees? What are some

advantages of binary search tree structures over linked lists
and arrays?

17. Write pseudocode or Java code for a BST search or
traversal. Argue for its correctness and characterize its
complexity.

18. Declare classs or classes for an operating system’s disk-
directory tree and its contents. Each item, or entry, in the
directory should have a name and a reference to a subtree.
An entry that is a file should have a null subtree; a
subdirectory’s subtree should store its contents. You need
not write methods or test your code. Write a sentence or two
describing this data structure and draw a diagram of it.

19. In Java, declare a type for a BST node storing a floating-
point number, and write a method to initialize such a node.

20. Write the pseudocode or program code for BST search and
comment it, arguing that it (a) terminates and (b) returns
correct result when search key is not in tree.

21. Modify a tree-manipulating file in subdirectory bst
(treesort.c, treesort.cpp, or intsort.cpp and the library it
uses, bst.h), or write your own BST code from scratch, to
prompt for integer values to delete from a binary search tree
and to delete them. (See slides.) Display contents of
resulting tree. Using data file intsort.dat, test for deletion of
50 (not present), 18, 15, 61 and 83. Submit your new code
and the test results.

22. Implement a word-counting program that reads a text file
and stores each white-space-delimited string in a node of a
binary search tree. The node should also store a count of the
number of times the word has been found so far. Use your
word counter with the text of a C program.
(Challenge: modify the specifications to define a word, or
lexeme, as being a white-space-delimited single punctuator
(‘;’, ‘,’, ‘:’, ‘{’, ‘}’, ‘(’, ‘)’, ‘[’, ‘]’, ‘+’, ‘=’, ‘-’, ‘.’, ‘/’, ‘<’,
‘>’, ‘*’) or a series of characters following or preceding a
punctuator.) Display in ASCII/alphabetical order the
lexemes found and their counts.

23. Write a program that inserts random numeric values into a
binary search tree. Estimate the average path length in trees
of different sizes, by having your program count the number
of steps necessary to search for a value. Compare this to the
calculated estimates for best, worst, and expected running
times.

Data Structures questions David Keil 9/08 26

Answers to study questions on topic 5

1. General trees
A. Multiple-choice, T/F
1. c. Successor nodes are particular to a linked list; leaf

nodes are particular to a tree.
2. e. A general tree may model a hierarchy, in which each

item may have one, two or more items immediately
below it.

3. f. Only a doubly-linked general tree will give each node
a link to its parent.

4. e. A binary tree models an arithmetic expression; each
parent node is an operator with two operands represented
by subtrees.

5. f. A tree is defined mathematically as a connected,
acyclic graph.

6. d. An operator is the parent of its operands, which are
represented as subtrees.

7. t. Removing an edge disconnects the tree; a tree must by
definition be connected.

8. c. The root has no parent.
9. b. A leaf may have a parent, but no children.
10. c. A subtree is a sub-expression, with the binary operator

as the root of the subtree above the two operands.
11. c. The depth of a tree is the greatest distance, in edge,

from the root to a leaf.
12. d. The general tree is represented as nodes, each with a

child link and a right-sibling link.
13. d. Adding an edge to a tree without adding a vertex must

create a path from some node back to itself, i.e., a cycle,
and a graph with a cycle cannot be a tree.

14. f. Unconnected acyclic graphs are not trees.
15. t. All vertices in a tree must be connected to each other

by some path.
16. b. Only one path exists between any two vertices in a

tree, and any two vertices are connected by some path.
17. b. All vertices in a tree are connected.
18. c. A parse tree could be implemented as a general tree,

with each nonterminal program element at the root of a
subtree.

19. c. |V| = |E| + 1, where |V| is the size of the set of vertices
and E is the set of edges. Example: tree with two vertices
and one edge connecting them.

20. d. A tree is an acyclic graph.

B. Short-answer
1. A general tree implements an outline.
2. struct nodes

{
 void* data;
 nodes* child,*r_sibling;
};

3. data, child, r_sibling;
(optional:) l_sibling, parent

4. A node may have any number of siblings, though only
one right sibling directly connected to it.

5. (a − b) * c + d
6.

2. Binary search trees
A. Multiple-choice, T/F
1. t. A tree’s depth determines its search time; the depth

is usually smaller than the length of a list with the
same number of nodes.

2. d. A tree node is accessed starting at the root.
3. b. A node has a left and right child.
4. b. Each node is the root of a subtree.
5. c. The right child of the root will contain a higher

value than the root.
6. c. Each node has references to a left and a right child.
7. b. A linked list node may have one link reference.
8. a. Each step in the search reduces the remaining work

by half.
9. c. The depth of a tree is the maximum number of

edges in a path from root to a leaf.
10. b. The depth of the tree will normally be roughly log2 of

n edges.
11. c. The worst case is a degenerate binary tree, whose form

is similar to that of a linked list. It is n nodes long.
12. f. The 3 and 4 should not be left of the 1, because they

have a higher value.
13. f. 8 should not be left of 7, since its value is greater.
14. t. Possible order of insertion: 4, 1, 3, 7,8.

3. Tree traversal
1. c. The standard tree traversal algorithm is recursive.
2. a. Traversal requires descending a tree to a leaf

repeatedly.
3. t. The tree shown contains all values listed, has the

binary-search-tree property, and each child node
follows its parent node in the chronological order of
insertion.

4. f. The tree shown has the binary-search-tree property,
but 4 is inserted before 3, so 3 should be below 4.

4. BST insert and delete
1. b. A new node is the child of a node that was

previously a leaf.
2. e. A binary search tree has no particular maximum

size.
3. f. Insertion or deletion takes time proportional to the

depth of the tree.

Data Structures questions David Keil 9/08 27

4. t. The deletion of a parent of two nodes may require
replacing the node’s value with the value stored in the
node that is leftmost in the right subtree of the node.

5. a. Since a leaf has no children, it may simply be
unlinked to delete it.

6. c. Linking the parent of a node to the node’s child in
effect removes the node from the tree without
removing its child.

7. b. A node inserted later is below; a node with a
smaller value is inserted to the left.

5. BST implementation

6. Performance issues
1. t. A balanced tree is defined as one in which all nodes

are at levels differing by at most one.

Data Structures questions David Keil 9/08 28

Short-answer
1.

2. O(logn). An insertion is at a leaf location; a leaf is on

average at about the depth of the tree.
3. O(nlogn). Each step in building a tree takes O(logn)

steps, because the depth of the tree reaches that value.
There are n building steps. The traversal takes n steps.
The traversal’s running time is dominated by the
building time.

4. The binary search tree property states that a node’s left
child stores a value less than or equal to that of the node,
and a node’s right child stores a value greater than or
equal to that of its parent.

5. O(n), because a degenerate tree is in the form of a linear
list, since each node inserted stores a greater value than
its predecessor.

6. O(lg n), because a balanced tree branches out evenly,
with no path longer than the base-2 logarithm of n, for n
nodes.

7.

Traversal: A, B, D, H, K, M, Q

8. 83, 61, 53, 62, 70, 90, or
8, 90, 61, 53, 62, 70, etc.

9.

10. (a) O(lg n)
(b) leaf: O(lg n)
parent of 1 node: O(lg n)
parent of 2 nodes: O(lg n)
(c) O(n lg n)
(d) O(n)

11.

12. One Solution:

13. The tree will have ten nodes and five leaves.
14.

15. struct tree_node

{
 char name[40];
 tree_node *child,
 *sibling;
};

16. Counts nodes in a binary search tree.
17. Preorder, postorder, inorder

Data Structures questions David Keil 9/08 29

Study questions on topic 6: Hashing
1. Hash tables
1. (T-F) Hashing arranges items by comparing them with each

other.
2. A hash function (a) is recursive; (b) is void; (c) returns a

reference; (d) typically maps from a key value to an array
subscript; (e) is a randomizer

3. Address calculation in source code is associated with
(a) hashing; (b) dynamic allocation; (c) all array accesses;
(d) recursion; (e) searching

4. A well-respected hash function is (a) the modulo-2
operation; (b) dividing by 2; (c) the factorial function;
(d) recursive; (e) mid squares

5. (T-F) Time for insertion into a sparsely filled hash table of
size n is Θ(log n)

6. (T-F) With a hash table, lookup and insertion are of the
same complexity.

7. (a) ; (b) ; (c) ; (d) ; (e) none of these

2. Simple hashing
1. (T-F) A bit vector (bit array) can store information about

whether a value belongs to a set in a location that
depends on the value.

2. Simple hashing involves storing items in locations whose
array subscripts are (a) hashed; (b) computed; (c) the
values stored; (d) chosen at random; (e) none of these

3. The simple-hashing way to store a set is (a) as a linked
list of set elements; (b) as an array of set elements;
(c) as an array of Booleans such that the elements whose
subscripts are in the set are assigned True; (d) as a string
that describes the set; (e) none of these

4. If two keys map to the same slot in a hash table, (a) one
must be discarded; (b) processing is the same as if only
one key mapped to that slot; (c) the collision situation
must be resolved; (d) there is only one way to respond;
(e) none of these

5. (a) ; (b) ; (c) ; (d) ; (e) none of these
6. (a) ; (b) ; (c) ; (d) ; (e) none of these

3. Linear probe implementation
1. A hash function (a) is recursive; (b) is void; (c) returns a

reference; (d) typically maps from a key value to an
array subscript; (e) is a randomizer

2. (T-F) For a hash table of size n, the lookup operation can
be worse than O(log n).

3. (T-F) For a hash table of size n, implemented for linear
probe, lookup can be worse than O(n).

4. (T-F) For a hash table of size n, the lookup operation can
be faster than O(log n).

5. Double hashing is a variant of (a) the mid-squares hash
function; (b) linear probing; (c) chaining; (d) Quicksort;
(e) the linked list

6. (T-F) An efficient hash table can be implemented with
an array.

4. Bucketing (chaining)
1. A bucket is used in (a) binary search trees; (b) hashing;

(c) linked lists; (d) stacks; (e) queues
2. (T-F) For a hash table of size n, implemented with

chaining, lookup can be worse than O(n).
3. (T-F) Chaining is a way to avoid collisions in hash tables
4. Clustering occurs in (a) only hash tables populated by

open addressing; (b) only hash tables with chaining;
(c) hash tables with open addressing or chaining;
(d) perfect hash functions; (e) the Bubble sort

5. Clustering occurs in (a) a linked list; (b) a binary search
tree; (c) a hash table; (d) a stack; (e) a queue

6. (T-F) An efficient hash table can be implemented with
one linked list.

7. (T-F) An efficient hash table can be implemented with
multiple linked lists.

8. (a) ; (b) ; (c) ; (d) ; (e) none of these
9. (a) ; (b) ; (c) ; (d) ; (e) none of these
10. (a) ; (b) ; (c) ; (d) ; (e) none of these

Data Structures questions David Keil 9/08 30

Short-answer
1. Collisions are a problem in the use of which data structure?
2. What kind of function is used to uniformly scatter data

items, by key, across an array so that the location of a data
item can be easily obtained from its value?

3. What is the name of the occurrence when many data values
hash to a similar vicinity of the table?

4. What hashing technique uses a hash function to generate a
location and an offset?

5. What is the name of the technique used to resolve collitions
in a hash table that is stored entirely in an array?

6. The use of linked lists in hash tables is called __________.
7. Supply the terms:

(a) A problem that arises when we attempt to store data in a
location whose address is calculated from a key value
(b) A method for storing data in a location whose address is
calculated from a key value
(c) A solution to the problem of two keys mapping to the
same address
(d) A subprogram that scatters data in a seemingly random
and uniform way
(e) A measure of the density of a hash table

8. Under what circumstances will any hashing scheme base
only on arrays break down?

9. In Big-O notation, what is the
(a) worst-case running time to store one data item in a hash
table of size m storing n items?
(b) best-case running time?

Longer-answer questions
1. Describe some problems solved by hashing, some problems

it raises for software implementers, and solutions to these
problems.

2. Describe two ways to implement a hash table and the chief
way in each to resolve the collision problem. Discuss
complexity of each.

3. Give arguments for and against the idea that theory is of
critical importance in working with computers.

Data Structures questions David Keil 9/08 31

Answers to study questions on topic 6

1. Hash tables
1. f. Hashing determines the location of an item by

performing a computation on the value of the item alone.
2. d. The hash function maps from a key value to an

address. If a hash table is an array of buckets, then the
hash function returns the subscript of a bucket.

3. d. The hash function maps from a key value to an
address. If a hash table is an array of buckets, then the
hash function returns the subscript of a bucket.

4. b. A bucket is the structure, perhaps a linked list, that
stores one or more keys. A hash function determines
which bucket a key goes to.

5. e. Modulo-2 maps to only two values; divide-by-2 yields
too many different values; factorial produces a huge
result, too big for a hash table. Mid-squares scrambles
data well.

6. f. If there are no or few collisions, an item can be
inserted into a hash table in constant time.

2. Simple hashing
1. a. Hash functions in effect calculate the location of a

key from its value.

3. Linear probe implementation
1. f. Hashing determines the location of an item by

performing a computation on the value of the item
alone.

2. t. Like hashing, the bit-vector implementation of sets
stores information about a value at a location that may
be calculated from the value.

3. b. Load factor rises as the table has more slots filled.
4. t. A densely populated hash table can require up to n

steps to search.
5. f. The array-based hash table’s size puts an upper

bound on the running time.
6. t. A single chain has no limit on how many items it

may store.
7. t. The open addressing method uses an array.

4. Bucketing (chaining)
1. c. Two solutions to the collision problem are:

implement the buckets as linked lists; store an extra
key in the next bucket after the one whose location
was returned by the hash function.

2. t. Insertion requires lookup and only a constant
amount of steps beyond that.

3. t. Hash-table lookup can be done in constant time if
there have been few collisions on insertion.

4. b. Calling a hash function twice makes sense only
when a linear probe is the result of a collision.

5. f. Chaining is a way to resolve collisions; there is no
way to avoid them.

6. c. Clustering occurs whenever many collisions occur
in the same vicinity of a hash table.

7. c. When a hash function maps many values to the
same vicinity of a hash table, we have clustering, a
problem.

8. f. A linked list is very slow to search, so it would not
be used for an entire hash table, only for part of it.

9. t. The chaining strategy for hash tables uses an array
of linked lists.

Data Structures questions David Keil 9/08 32

Short-answer
1. a hash table
2. hash function
3. collision
4. double hashing
5. linear probing (open addressing)
6. chaining

7. Supply the terms:
(a) collision
(b) hashing
(c) linear probing
(d) hash function
(e) load factor

8. when the number of values stored exceeds the array size
9. (a) O(n)

(b) O(1)

Data Structures questions David Keil 9/08 33

Study questions on topic 7: Graphs

1. Relations and directed graphs
1. A graph is (a) a set of integers; (b) a set of vertices;

(c) a set of vertices and a set of edges; (d) a set of edges;
(e) a set of paths

2. Which might be used in task scheduling? (a) functions;
(b) vertices; (c) undirected graphs; (d) directed graphs;
(e) none of these

3. (T-F) In a connected graph an edge exists between each
pair of vertices.

4. The connectivity number of a graph is (a) the number of
vertices; (b) the number of edges; (c) the number of
paths; (d) the number of distinct connected subgraphs;
(e) the number of other adjacent vertices

5. The degree of a vertex in a graph is (a) the number of
vertices in its graph; (b) the number of edges in its graph;
(c) the number of paths; (d) the number of distinct
connected subgraphs; (e) the number of other vertices
adjacent to it

6. A tree is a graph that is (a) connected and cyclic;
(b) connected and acyclic; (c) unconnected and cyclic;
(d) unconnected and acyclic; (e) none of these

7. A graph is defined in part by (a) exactly one ordered pair of
vertices; (b) a relation; (c) a cycle; (d) one path joining each
pair of vertices; (e) none of these.

8. (a) ; (b) ; (c) ; (d) ; (e) none of these

2. Paths
1. A series of edges that connect two vertices is called

(a) a path; (b) a cycle; (c) a connection; (d) a tree;
(e) a collection

2. A series of edges that form a path from a vertex to itself
is (a) a spanning path; (b) a cycle; (c) a connection;
(d) a tree; (e) an edge

3. To design a communications network that joins all nodes
without excessive lines, we must find a (a) path;
(b) connectivity number; (c) minimal spanning three;
(d) expression tree; (e) search tree

4. To find a path from one vertex to another, we may use
(a) depth-first search; (b) connectivity number;
(c) minimal spanning tree; (d) expression tree; (e) search
tree

5. A graph in which exactly one path joins any pair of
vertices is (a) subgraph; (b) tree; (c) connected graph;
(d) cyclic graph; (e) unconnected graph

6. (a) ; (b) ; (c) ; (d) ; (e) none of these

3. Weighted graphs
1. A weighted graph has an adjacency matrix that is

(a) integers; (b) vertices; (c) real numbers and ∞;
(d) booleans; (e) none of these

2. (T-F) The Dijkstra algorithm examines all possible paths
from each vertex to each other one.

3. (T-F) The Dijkstra algorithm builds a tree of the
minimum-weight paths from a single source vertex to
each other vertex.

4. A minimal spanning tree is a subset of a (a) binary
search tree; (b) undirected graph; (c) weighted graph;
(d) array; (e) none of these

5. (a) ; (b) ; (c) ; (d) ; (e) none of these
6. (a) ; (b) ; (c) ; (d) ; (e) none of these

4. Implementations
1. A graph may be fully represented by (a) its vertices;

(b) its edges; (c) an adjacency matrix; (d) the degrees of
its vertices; (e) none of these

2. A graph may be conveniently represented as (a) a vector
of characters; (b) a two-dimensional array of Booleans;
(c) a single linked list of Booleans

3. In the array implementation of graphs, what is the type
of the array elements? (a) Booleans; (b) characters;
(c) integers; (d) structures; (e) arrays

4. The two-dimensional array implementation of graphs
tells whether or not a pair of vertices are (a) part of the
graph; (b) connected; (c) adjacent; (d) the same; (e) none
of these

5. A list implementation of a graph might use an array of
linked lists, each list containing all the ________ a
vertex. (a) paths containing; (b) vertices adjacent to;
(c) edges adjacent to; (d) trees containing; (e) none of
these

6. (a) ; (b) ; (c) ; (d) ; (e) none of these

Data Structures questions David Keil 9/08 34

Short-answer
1. A two-dimensional array that represents a graph is a(n)

_______ matrix.
2. A graph is defined by a set of _________ and _________.
3. A directed or undirected graph may be implemented in C

or Java by ___________ or _____________.
4. Write an adjacency matrix and a diagram of a linked-list

representation of the graph below.

5. What is the minimum number of vertices in an undirected

cyclic graph?
6. In the graph below, what are the

(a) outdegree of vertex a?
(b) weight of the shortest path from vertex c to vertex a?

7. With respect to the graph below,

(a) Is it cyclic?
(b) Is it connected?
(c) List, in order, the vertices in the longest path

8. In Big-O notation, what is the running time of the Dijkstra
algorithm? (See slide) Why?

9. Referring to the graphs below,
(a) Which are directed?
(b) Which are cyclic?
(c) What is the degree of a in (i)?
(d) What is the weight of the shortest path from a to d in
(iii), if the weight of each edge is 1?

10. (a) Is the graph below connected?

(b) Is it cyclic?
(c) Find a path from a to d

Longer-answer questions
1. Contrast depth-first and breadth-first search of a graph.
2. Describe the Dijkstra algorithm for finding paths in graphs.
3. Write pseudocode or Java code for an algorithm to convert

a graph represented by a matrix to an array-of-lists
representation

4. Write pseudocode or Java code for an algorithm to convert
a graph represented by an array-of-lists to a matrix
representation

5. Describe the Prim algorithm for finding paths in graphs.
6. Describe a way to find a path from a given vertex in a graph

to a second given vertex.

Data Structures questions David Keil 9/08 35

Answers to study questions on topic 7

1. Relations and directed graphs
1. c. The set of edges is a relation on the set of vertices.
2. d. An arrow might run from one task to a task that can be

performed after it.
3. b. The set of edges is a relation on the set of vertices.

2. Paths
1. a. A path joins vertices directly.
2. b. A cycle is a path from a vertex to itself without

passing through any other vertex twice.
3. c. The minimal spanning tree contains sufficient edges to

connect each vertex to each other, with minimal total
weight.

4. a. Depth-first and breadth-first are two kinds of search
for paths in a graph.

5. b. A tree is connected and acyclic.

3. Weighted graphs
1. f. A path exists between any two vertices, but not

necessarily an edge.
2. d. A subgraph is connecte4d if each of its vertices is

connected by some path to each other one.
3. e. If a vertex is adjacent to five other vertices, its degree

is 5.
4. b. All vertices in a tree connect and there are no cycles.
5. f. The Dijkstra algorithm builds one tree of paths using a

greedy algorithm. It does not examine every possible
path.

6. t. The tree produced by the Dijkstra algorithm contains
optimal paths from the source node to each other one.

7. b. In a weighted graph, the least-weight path may have
more edges than some greater-weight path.

4. Implementations
1. c. The edges are the relation denoted by the matrix.
2. b. A graph may be represented by a matrix (2-

dimensional array) or by an array of linked lists.
3. a. Each element in the two-dimensional array tells

whether the two vertices specified by its two subscripts
are adjacent.

4. c. The array is called an adjacency matrix.
5. b. The adjacency matrix of an n-vertex graph may be

represented as an n-element array of lists of vertices
adjacent to a given one.

Data Structures questions David Keil 9/08 36

Short-answer
1. adjacency
2. vertices and edges
3. two-dimensional array of Booleans or an array of lists of

integers.
4. 3
5. a b c d e f g h

a 1
b 1
c 1 1 1
d 1 1
e 1 1
f 1
g 1 1 1 1
h 1 1

6. (a) 2
(b) 3.2

7. (a) no
(b) no
(c) a, b, e, d

8. O(n2); nested loops
9. (a) ii, iii

(b) iii
(c) 1
(d) 4

10. (a) no
(b) no

Data Structures questions David Keil 9/08 37

Study questions on topic 8: Multithreading

1. Concurrency
1. Multitasking is (a) concurrent activities by multiple

computers; (b) a series of activites by one processor;
(c) one processor running multiple programs concur-
rently; (d) the same as multithreading; (e) parallel
computing

2. Multithreading is (a) concurrent activities by multiple
computers; (b) a series of activites by one processor;
(c) one program running multiple processes
concurrently; (d) the same as multitasking; (e) parallel
computing

3. A thread simulates ownership of (a) a network; (b) a user
account; (c) a computer’s resources; (d) a processor;
(e) none of these

4. Garbage collection in the background is an example of
(a) batch processing; (b) non-concurrency; (c) parallel
computing; (d) multithreading; (e) distributed computing

5. (a) ; (b) ; (c) ; (d) ; (e) none of these

2. Java threads
1. The Java new operator invokes (a) dynamic allocation of

memory; (b) memory allocation on the stack;
(c) deallocation of memory; (d) allocation and
deallocation of secondary storage; (e) none of these

2. Threads of equal priority get processor resources by
(a) pre-emption; (b) round-robin time slicing;
(c) submitting requests; (d) user intervention; (e) none of
these

3. The Java class that enables concurrency within a
program is (a) System; (b) String; (c) Output;
(d) Memory; (e) Thread

4. (a) ; (b) ; (c) ; (d) ; (e) none of these

3. Priorities, scheduling, and
synchronization
1. The Java scheduler ensures that the ____ thread executes

at all times (a) shortest; (b) next-in-line; (c) highest-
priority; (d) lowest-priority; (e) none of these

2. Synchronized methods for one object may execute
(a) under multiple concurrent threads; (b) without
limitation; (c) under only one thread at a time; (d) all of
these; (e) none of these

3. (a) ; (b) ; (c) ; (d) ; (e) none of these

4. Producers and consumers
1. Daemon threads (a) execute in the foreground;

(b) execute in the background; (c) can execute while
waiting for the threads they serve to start; (d) all of
these; (e) none of these

2. Java garbage collection is a (a) program; (b) distributed
service; (c) web service; (d) daemon thread; (e) none of
these

3. Daemon threads are (a) programs; (b) distributed
services; (c) utilities performing services for other
threads; (d) error threads; (e) none of these

4. (a) ; (b) ; (c) ; (d) ; (e) none of these

Data Structures questions David Keil 9/08 38

Study questions on topic 9: Graphics programming

1. Events, controls, and views
1. In a model/view/controller architecture, program

execution is driven by (a) events; (b) views; (c) models;
(d) commands; (e) interrupts

2. Three important aspects of an application are (a) method,
view, and control; (b) data structure, model, and view;
(c) control, design, and method; (d) control, model, and
view; (e) analysis, data structure, and method

1. An instance of a view class may be (a) an array;
(b) a character; (c) a window; (d) a screen driver;
(e) a menu option

2. A GUI or application framework (a) is a data structure;
(b) is a single class; (c) is a set of classes that defines a user
interface; (d) is a form of documentation

3. In a GUI or application framework, a window is (a) a class;
(b) an instance of a model class; (c) an instance of a view
class; (d) an instance of a controller class; (e) an event

4. In a model/view/controller architecture, program execution
is driven by (a) events; (b) views; (c) models;
(d) commands; (e) interrupts

5. The application programmer may use a pre-written user-
interface library and write _______ handler methods to
respond to different kinds of user input. (a) view; (b) string;
(c) loop; (d) event; (e) mouse

6. An application programmer writes an application class
(a) as a base class for the library’s derived class; (b) as a
class derived from the library’s base class; (c) as a class
that is not part of an inheritance relationship; (d) to
implement a model; (e) to implement a view

7. (a) ; (b) ; (c) ; (d) ; (e) none of these

2. Bitmap and vector graphics
1. Drawing an image pixel by pixel (a) takes several

seconds; (b) is bitmap rendering; (c) is vector rendering;
(d) is impossible; (e) is always preferred

2. Drawing an image stored as instructions (a) takes several
seconds; (b) is bitmap rendering; (c) is vector rendering;
(d) is impossible; (e) is always preferred

3. Two advantages of vector over bitmap storage are
(a) precision and compression; (b) precision and ease of
editing; (c) compression and ease of editing;
(d) compression and esthetics; (e) none of these

4. (a) ; (b) ; (c) ; (d) ; (e) none of these

3. Polymorphic collections of shapes
1. In polymorphism, the behavior of an object depends on

whether (a) it is an instance of a base or derived class;
(b) the object is statically or dynamically allocated; (c) it is
dynamically allocated; (d) it has a reference member; (e) it
has a private member method

2. (T-F) With polymorphism, a derived class may change the
behavior of its ancestor class.

3. Polymorphism is implemented through _______ methods.
(a) global; (b) base-class; (c) virtual; (d) access; (e) void

4. (T-F) In a mixed collection of graphical objects of different
types, the same draw method would be used to display each
shape.

5. The address of a call to a virtual method is resolved at
(a) compile time; (b) the time a program is loaded; (c) the
time the method actually executes; (d) the time the method
terminates; (e) the time the program terminates

6. A virtual method is a member of _______ classes.
(a) simple and complex; (b) container and contained;
(c) base and derived; (d) application and view; (e) model
and view

7. Determination of the call address of a member method call
at run time rather than compile time is (a) inheritance;
(b) encapsulation; (c) early binding; (d) late binding;
(e) forward reference

8. An array of _______ makes possible a collection of shapes
of mixed classes with polymorphic behavior. (a) integers;
(b) method references; (c) character references; (d) base-
class references; (e) none of these

9. (T-F) A data item may be polymorphic.
10. (T-F) Polymorphism is used only in cases where a base

class has a single derived class.
11. (T-F) An array of references may sensibly point to

instances of a variety of data types.
12. Polymorphism is an alternative to the use of (a) if…else;

(b) switch; (c) while; (d) goto; (e) method calls
13. Virtual methods are used most often in (a) encapsulation;

(b) data hiding; (c) memory management; (d) inheritance;
(e) polymorphism

14. An abstract base class (a) has no virtual methods;
(b) cannot be instantiated; (c) has a definition that may not
be overridden; (d) has a null constructor; (e) inherits from a
concrete base class

15. (a) ; (b) ; (c) ; (d) ; (e) none of these

